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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. 8. customary units of measurement can be converted to metric (s1)

units as follows:

Multiply By To Obtain
cubic feet per second 0.02831685 cubic metres per second
Fahrenheit degrees 5/9 ‘Celsius degrees or Kelvins¥*
feet 0.30L48 metres
feet per second 0.3048 metres per second
pounds (mass) per cubic foot  0.,01601846  grams per cubic centimetre
square feet ‘ 0.0929030L  sguare metres
square feet per second 0.0929030k4 square metres per second

*¥ To obtain Celsius (C) temperature readings from Fahrenheit (F) read-

ings, use the following formula: C = (5/9)(F - 32). To obtain

Kelvin (K) readings, use:

K = {5/9)(F - 32} + 273.15.



A REVIEW OF NUMERICAL RESERVOIR
HYDRODYNAMIC MODELING

PART I: INTRODUCTION

Reservoir Stragification and Its Tmportance

1. As the population of the United States has increased over the
past few decades, there has been a corresponding increase in the demand
on water supplies. To help meet thisz demand, numerous impounding reser-
voirs have been constructed. The impoundment or damming of a flowing
stream can significantly affect the quality of the water. This can hap-
pen as a result of the direct increase in travel time required for water
to traverse the distance from the headwater of the stream to the dam as
well as the effect that stratification plays in determining the quality
of the water released from the reservoir. The relationship between
density variations and quality parameters in the reservoir is a direct
result of the influence of stratification on the movement and mixing of
water,

2. Btratification or density variations in a reservoir can occur
as a result of solute concentrations, suspended solids concentrations,
or temperature variations as a result of surface heat exchange. BSurface
heat exchange is a function of both short- and longwave radiation as
well as surface conduction, evaporation, and precipitation. In the
remainder of this report, the term "stratification" will refer to density
variations due to thermal effects.

3. At the beginning of spring, a reservoir is essentially homoge-
neous. However, as the weather warms, the water near the surface also
warms due to an exchange of heat from the atmosphere to the water sur-
face. The warmer water near the surface is then mixed downward, primarily
by wind action and diurnal cooling. By late summer, the reservoir will
attain maximum stratification (Figure 1). A warm upper layer (epilimnion)

of water resides over the cold deeper layer (hypolimnion) with a zone
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Figure 1. Regions assoclated with thermal
stratification

between the two (metalimnion) in which a large density gradient exists.
As the weather cools during the fall, the surface temperature decreases,
resulting in denser water at the surface and a corresponding convective
overturning. This mixing eventually results in an isothermal water body
that remains isothermal through the winter, except during periods of ice
cover. Such a cyclic variation of temperature is demonstrated by the

seasonal temperature profiles presented in Figure 2.

Density Currents

. The variation of the fluid density in a stratified reservoir
gives rise to what are known as internal density currents or stratified
flow. Such flow refers to motions involving fluid masses of the same

phase, A heavier liquid flowing beneath a lighter liquid or a heavier
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Figure 2. Temperature profiles of the west
basin of Horn Lake, B, C., during 1960
(taken from Slotta et al. 1969)

gas moving under a lighter gas will be subject to gravitational effects
that depend upon the differences between the two densities. Such flows
can be extremely important. Slotta et al. (1969) discusses an example

of a density current in the Watts Bar reservoir of the Tennessee Valley
Authority (TVA) system in which a coldwater density flow moves over

13 miles* upstream into the warmer waters of one of the arms of the

¥ A table of factors for converting U. 5. customary units of measure-
ment to metric (SI) units is presented on page L.



regservoir. This bottom density current flows past a sewer ocutlet as
well as the outfall from a large paper mill. A% one time, sewage and
nill waste were discharged into the coldwater current and carried up-
stream to the intake of a water plant. The situation has since been
corrected by use of a variable level outfall for the sewage and mill
waste. The internal motions in reservoirs due to temperature variations
or perhaps due to the inflow of sediment-laden streams plus the under-
standing and control of salinity intrusion in tidal estuaries are among
the most challenging of present-day problems dealing with stratified
flow.

Relationship of Water Quality to Hydrodyumamics

5. The primary objective of a prediction of stratified flow in
reservoirs is to enable scientists to compute temperature distributions
and water transports insofar as they affect various water quality
parameters. While the process of heat transfer in bodies of water is
nothing new, the prediction of the resulting multidimensicnal flow
phenomena in a reservoir for varying stream inputs as well as dam dis-
charges from varying levels is extremely difficult.

6. A substance (either chemical or biological) disperses through
a reservoir by convection and turbulent diffusion. In addition, the
substance is also acted upon by various chemical, bioclogical, and physi-
cal processes. An understanding of both the dispersion and the chemical
and biological processes is essential in any prediction of water guality,
which is the ultimate goal te be sought, although not the goal of this
study. It should be clear then that a problem of such scope calls for
a cooperative effort of a wide variety of scientific dispiplinés rang-
ing from meteorology, hydrology, and hydrodynamics to chemistry and
blology.

Hydrodynamic Predictive Techniques

7. In an attempt to predict the hydrodynamics of a reservoir, one



or perhaps a combination of three approaches may be taken--field
investigations, physical models, and mathematical or numerical models.
Field investigations may reveal what Presently occurs in a water sys-
tem, but cannot predict what will result from changes due to new inputs
to the system, In addition, field investigations are usually relatively
expensive. Depending upon their complexity, e.g., large models of

river basins, estuaries, and bays, physical models can require slgnifi-
cant investments of capital, long construction times, and long test
periods. However, physical models of reservoirs to address problems
such as near-field inflow selective withdrawal and pumpback character-
istics of specific outlet structures and gecmetries are far less expen-
sive to construect and operate. Depending upon apvroximations made to
the goverring equations of motion and the solution technique employed

to solve the equations, numerical models can often provide relatively
low cost and highly flexible models. However, it should be remembered
that, as with many physical models, numerical models must be calibrated
and verified before confidence can be placed in results obtained from
them. Data from both field studies and rhysical model tests are used to
assess the reasonableness of numerical predictions and to aid in the
further development of mathemstical descriptions of observed physical
processes. However, the steady advances in computer technology over
the past two decades (Table 1) indicate the potential for even greater
economical use of more widely applicable numerical models in the future.
In a practical sense, a combination of the most desirable featuresg of
both physical and numerical models will probably continue to provide the

best approach for solving most hydrodynamic problems.

Types of Numerical Models

8. Numerical hydrodynamic models can differ widely, depending
upcen such things as the solution technique applied to the governing
differential equations representing the physical processes, the assump-
tions made in the derivation of the governing equations, whether the

phenomena are steady or time-varying, and the spatial dimensionality



‘52 = 9LGQHOT = W fpre = 720T = X 4

*omWT) AJTOWSW PUB SWIY DPE l0d 9SBSIOSP 0F PN Uss( SBY SIUSILMOUOD SUWOS sra9ndmod JuUsSded ULl xa
*(GL6T)

YqToT WoLF usdel, *(TL6T) uotyesodro) BLRPASY PUB (L96T) SO9BTOO0SSY SWBPY ‘M SSTIBYD WOIF BIEQ 4

UWOTTTTIAL f{ — TBNIITA

UOTTTTW T — TBsY 0T"0 0T*0 6L/- £0Z HIGXD
WoT )
q962 0Tg'0
de€ 50°0 7500 1L/e G6T/09€ WAI
JASTS 09L°T
3Ih9 6Lz 0 G.20°0 69/T 009. Dad
H2TS ¢L°o 910 la/e 06/09€ W1
AgeT 0°T €0 719/6 0099 Dad
396 g’ G'1 19/% Yojedis WHI
0000% f i 09/4 OUYT OBATUN
b rA N ol fc Ga/et 70l WET
000T AN A T6/¢€ I oBATH])
SP.JIOM st arl Mh\SquH Toqnduwo)
+LqTomdR) AIOWSH QWL »%SUEL PRV POXSATTS( 38ITd

oTofLn AIOWal

#SOTISTA920BIBY) JIoqndwo) TBUOTIUIAUC)

T °T9®L

10



considered, with perhaps the spatial dimensionality being the most
commonly used delineator,

9. One-, two-, and fully three-dimensional numerical models that
provide for the simultaneous solution of the coupled turbulent velocity
field and the temperature field, subject to varying boundary conditions,
exist and are applicable in varying degrees to the problem of predicting
stratified reservoir hydrodynamics for use in developing water quality
predictions. Perhaps the earliest work in which computations for the
fluid density and the flow were coupled was the work of Welch et al.
(1966) in the development of the two-dimensional Marker and Cell code
commonly referred to as MAC. Paralleling the development of MAC and
the MAC-related codes, e.g., Chan and Street's (1970) SUMMAC, Slotta
et al.'s (1969) NUMAC, etc., have been a host of models that might be
described as control volume models. With this method, a reservoir is
divided into a number of horizontal layers extending over its breadth
and length, Homogeneity is then assumed in each layer. The result is
a one-dimensional model with variations allowed only in the vertical.
Governing differential equations are obtained by applying mass, momentum,
and heat balances for the control layers. Inflow and outflow boundaries
can be included quite easily in such models. Parker et al. (1975) re-
viewed such one-dimensional reservoir medels and concluded that such
models could be applied to larger, deep reservoirs where horizontal fldw
hasg minimal impact on the vertical density structure. The primary ad-
vantage of such a model is its ability to resolve long-term or seasonal
temperature profiles economically. However, it must be noted that such
one~dimensicnal models are not applicable to the problem with which this
study is concerned--predicting multidimensional flow fields within
stratified reservoirs for quality predictions.

10. Beth two- and three-dimensional hydrodynamic models are dis-
cussed in detail in succeeding sections. Some of the models investi-
gated, such as the two-dimensional models of Edinger and Buchak (1979),
Waldrop and Farmer {1976), and Roberts and Street (1975), are directly
applicable to resefvoirs, although in varying degrees; while cothers,

such as the two-dimensional depth-averaged models of Leendertse (1967),

11



Masch et al. (1969), and Reid and Bodine (1968), have no applicability
to the modeling of internal flows in stratified reservoirs other than
perhaps in the numerical technigues employed.

11. Three-dimensional hydrodynamic models have only recently
been developed to the state where application to complex geometries with
reasoﬁable resolution for short simulation periods appears possibles
however, the cost is still prohibitive for simulations over long periods
of time. Thus, it appears that if one is only interested in the steady-
state flow and temperature field resulting from situations such as a
discharge of ﬁarm water from a power plant, three-dimensional modeling
appears feasible. However, 1f the interest lies in computing reserveir
hydrodynamics over a stratification cycle, i.e., several months, new
develobments in solution techniques and the availability of larger and

faster'computers must be realized before such modeling becomes practical.

Purpose and Scope

12. The need for a predictive capability--numerical models in
the ares of stratified reservoir hydrodynamics-—-has been firmly es-
tablished. The purpose of the study described herein then is to select
the most applicable existing models and to provide recommendations fox
additional developmental work needed to meet that need. Because of the
nature of the problem to be addressed, selected models must have the
capability of handling free surface variable density flows that are
time-dependent. PARTS II and IIT present a detailed discussion of the
theoretical basis and corresponding numerical techniques that are common
to all numerical hydrodynamic models. Three-dimensional hydrodynamic
models are discussed in PART IV, and two-dimensional hydrodynamic models
are discussed in PART V. Ian addition to an investigation of the theo-
retical limitations of various models, a limited attempt at analyzing
the actual performance of several models has been made. This was accom~
plished through model applications to a coldwater underflow in the U. S.
Army Engineer Waterways Experiment Station (WES) Hydraulics Laboratory's

General Reservoir Hydrodynamics {(GRH) flume. These results are presented

12



in PART VI. Finally, conclusions of this study and recommendations for
‘additional developmental work needed to provide the Corps of Engineers

with computer models with the potential to provide a predictive capabil-
ity in the area of reservoir hydrodynamics in an accurate and economical

fashion are presented in PART VII.

i3



PART II: MATHEMATICAL DISCUSSIONS

Basic Equations and Approximations

13. The Wavier-Stokes eguations express the conservation of mass
and momentum of a flow field and are the basic governing equations for

the solution of any fluid dynamics problem. These equations written in

tensor notation are¥®

nuity: SR i_
Continuity: el Bxi =0 (1)
dpu. 3(puw,u,) aT, .
. i 1°j" _ =8P iJ]
Momentum: —p—+ bx, | bx; * ey - 2ey s fen * 3 (2)
where

p = water density

t = time
u, = tensor notation for veloeity
;= tensor notation of spatial ccordinate
; = acceleration of gravity
i3k = eyclic tensor
Qj = Coriolis parameter
Tij = laminar stress tensor
U = molecular eddy viscosity
513 = Kronecker delta

and where

Bui du, 5 Bui
Ti,j:u_%-l-axi - 3¢ 8

represents the viscous moleculsr stress arising as a result of the con-

tinuum approach. It will be recalled from tensor theory that repeated

¥ TFor convenience, symbols are listed and defined in the Notation
(Appendix C).

14



indices imply a summation and also that Eijk in the Coriclis term is

the cycelic tensor defined as

€ 1l , for an even permutation of ijk

ijk
= =1 , for an odd permutation of ijk
= 0 , otherwise
For example, 3123 = 5231 = 8312 = 1 ; whereas, 8321 = 5213 = 5132 = =1

and the Kronecker delta Gij is defined as

Gij =1, 1if i =3
= 0 , otherwise

In addition to the above equations, a conservation of energy equation
must also be written for fluid flow problems with thermsl effects. With
the assumption of a constant specific heat and with the neglection of
viscous dissipative effects, one can write the energy equation as the

following transport egquation for temperature T :

ij X,

Energy: g—z + = STAN Z sources - Z sinks (3)

ox, 3x,
i i

where Dij is equal to the diffusivity coefficient. This equaticn
states that the temperature can change as a result of advection by the
flow field, molecular diffusion, and the actions of any sources and
sinks of heat. As a matter of fact, this same equation applies to the
transport of any constituent @ , where @ would replace T in the
equatiocn and appropriate sources and sinks ‘and boundary conditions
would be prescribed. For example, in the numerical modeling of the
hydrodynamics of an estuary, a similar transport eguation for the salin-
ity would be reguired.

' 14, One additional equation remains to be written in order to

close the system. An equation of state expressing the density as a

15



function of the temperature and pressure (and salinity in estuarine

meodeling) must be employed:

Equation of State: p = p(T,P) (4}

With the closure of the system, there exist six equations to be solved
for the six unknowns--density p ; three velocity components u , v ,
w 3 pressure P 3 and temperature T .

Time averaging for turbulent flow

15. The above equations written with molecular wvalues of viscosity
and diffusivity are only applicable in a practical sense to laminar
flow fields where the flow and thermodynamic wvariables do not exhibit
random irregulér'fluctuations in time. However, most flulds in motion
exhibit such fluctuations and are referred to as "turbulent flows."

16. Following Reynolds, the approach normally taken to make the
equations applicable to turbulent flows is to assume that the dependent
variables are composed of an average time-varying component plus a small
randomly varying component about the average value. This is illustrated

below.

Thus., one writes

ui(X:vY:Z:t) = ui(X9Y:Z:t) + ui(xs.Vszst)

16



where

t+AL /2
E; = %E ui(x,y,z,t) dt
t-At/2
and
t+at /2
%{ ui(x,y,z,t) at = 0
t-At /2
ui = deviation between instantaneous velocity and time-averaged
veloeity
ﬁ£ = time-averaged velocity
At = time step

With all the dependent variables writien in the form above, substitution
into Equations 1, 2, and 3 and then integration over the time increment
At  produces the same form of the Previous equations, but now written
with the time-averaged components as the dependent variables, plus the

gdditional terms

t+at/2
l— 1] 1
A uiuj at
t=-At /2
and
t+at /2
1_ 1 ¥
At T'u' dt
t-At/2
where T' = deviation between instantaneous and time-averaged temperature .

17. The first term is referred to as the turbulent Reynolds
stress, since the high frequency turbulent fluctuaticns manifest them-
selves as viscous stresses acting on the average component of flow.
Using Boussinesq's concept of eddy viscosity, the first term is

written as

t+Aat /2 — -—

1 o, ou,
= uwlu! dt = e, |—= + —L |(no summstion over i)
At i7] 1j\ ox, axi

LAt /2 J

17



In analogy with the laminar flow case, Eij is referred to as the
turbulent or eddy viscosity tensor.

18. In a similar fashion, the second term above, which arises
from the time averaging of the temperature equation, is commonly
written as
t+AL /2 _

T'ui dt = Aij %E—
tIAL /2 J

Z~

where Aij is called the "eddy diffusivity tensor™ and T is the time-
averaged temperature. 0

19. The equations commonly applied to turbulent flow problems

.. can now be written as

'5 Bﬁi
Continuity: EE-+ Bxi =0 (5)
spu.  o(pu,u,) =
] i igj- _ 9P e
Momentum: o + . vy + og;
3 i
_ _ (6)
. Bui du,
- 2e., . 0.pu, + — e, N\
ijk X X, ijlex oxX,
JEJ xy | i3\ox, 1
—  9Tu =\
T i3 5T )
Energy: -+ 3X’i = Bxi (Aij ij)+ z sources - z sinks (7)
Pquation of State: p = p(T,P) (8)

where

E' time-averaged wabter density
P

and where the assumption has been made that the eddy coefficients are

time-averaged pressure

mach larger than the molecular values; i.e.,

18



Boussinesq approximation

20. Subject to the azssumptions made in their derivation, the time-
averaged governing equations (Equations 5-8) are applicable to any turbu—
lent fluid dynamics problem. An approximation usually made when applying
the equations to hydrodynamic problems was first pointed out by
Boussinesq. When variations of temperature are small (At < +10°C),
variations in density will be less than one percent. For example,
Edinger and Buchak's expression relating the density of water to the
water's temperature results in only a 0.15 percent incresse in the den-
sity when decreasing the temperature from 20°C to 10°C. These small
variations can be ignored in general with one exception. The variability
of density in the gravitational term cannot be ignored, Hence, p is
treated as a constant in all places except the body force term.

2). With the Boussinesqg approximation, the continuity and momentum

equations become

Bui
Continuity: el 0 (9)
i
., a(w.u,) = -
Momentum: =+ —53 o ax. " p_ B3
3 o i o
(10)

[I-—'

du, aﬁl
- 2o d éi'(axl * o )
where Po is a reference water density. The energy equation and the

eqguation of state are not affected.

Conservative versus nonconservative

22, When the momentum equations are written as Equation 10, they

are known as the conservative form of the equations. If the convective
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term is expanded and Equation 9 is substituted, Equation 10 reduces to

au o — —
i - i 1 9P (p) . —
+ u, = - et | =] g, - 2g,., 0,
3t 3 ij p, B, o) i 13k 5%
(11)
1 3 Bui Buj
+ 9x Eij ax + 9x
o %3 3 i

which is referred to as the nonconservative form. Analytically, the

two forms are equivalent. However, in numerical solutions of flow prob-
lems, they are not. As discussed by Leendertse (1967), a finite differ-
ence representation of Equation 1] dces not conserve momentum of the
flow field; whereas, the identical numerical representation of Equa-
tion 10 does. As a result, most of the more recent numerical ﬁydro—
dynamic models use the conservative form as opposed to the nonconserva-
tive form employed in many of the earlier models.

23. An interesting point is that in the laminar form of the
momentum equations, i.e., Equation 2, when the assumption of incompres-
sibility is made, researchers have historically neglected that portion
of the viscous térm that contains the condition of incompressibility,

ou,
i

i.e., g-u EE_-aij , even though they may have retained the conservative
J

form of the convective terms. In the turbulent form of the equations,
there is no such inconsgistency, since all molecular viscous terms are
neglected due to the assumption that the eddy viscosity is much larger

than the molecular viscosity. Therefore, the condition of incompressi-~

Ju,
bility is not invoked in dropping the —=

2 U term in the turbulent
3 axj

8, .
1J
form of the equatiouns.

Convective versus cuasi-static

24, An assumption that is usually made in hydrodynemic models is
that vertical accelerations are negligible when compared to the gravita-
tional acceleration. Neglecting viscous terms also, the vertical momen-

tum equation reduces to
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= = pg (12)

vhere z 1is the vertical spatial coordinate and is positive downward.
Equation 12, of course, states that the pressure is hydrostatic,

25. When considering the coupling of the thermodynamics and the
hydrodynamics of a water body, a distinction must be made between con-
vective and, as labeled by Simons (1973), "quasi-static" models. Con-
vective models retain the complete vertical momentum equation and can
simulate in full detail the convective overturning of unstable water
masses, such as the upwelling of cells of warm water or perhaps the
plunging of a coldwater inflow. Quasi-static models where the pressure
is hydrostatic eliminate vertical accelerstions due to buocyancy effects,
which precludes the explicit treatment of free convection associated
with unstable stratification. Convective overturnings can only he
handled as mixing alcng the vertical axis.

26. A commonly used technique is that of invoking a large verti-
cal diffusion of heat to counteract such instabilities. This results in
the removal of any unstable stratification the moment it occurs. Such
a technique is implemented by checking the vertical temperature profile
at each horizontal location after each computation. TIf at any point
lighter water lies below denser water, the profile is adjusted without
affecting the total heat content of the column.

27. As will be discussed in more detail in connection with the
numerical solution of the governing equations, models with the hydro-
static assumption require far less computer time than the fully convec=~
tive models.

Spatial averaging

28. A solution of Equations 7, 8, 9, and either 10 or 11 consti-
tutes a fully time-varying, three-dimensional model with the only assump—
tion being the Boussinesq approximation. Such models do currently exist
and will be discussed in a later section. However, mest hydrodynamic
- modelers employ a spatial-averaging technique similar to the turbulent

time-averaging technigue to yield either one- or two-dimensional models.
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As previously noted, the present state of the art is such that three-~
dimensional models are not practical for long-term simulations of the
hydrodynamics of a reserveoir.

29. The basic assumpticn in the spatial averaging cof the three-
dimensional equations is that the dependent variables can be represented
by an average value over one or more of the spatial ccordinates plus

some small random deviation; e.g., the velocity would be written as

= LT
u, = u, +oul _ (13)
where
x,+Ax. /2
i ol
q, = = w, dx
i Axi i i
xi—Axi/2
+
X, Axi/Q
2 u! dx, = 0
Axi i i
xi—Axi/Q
and
ﬁi = time- and space-averaged veloclity
Axi = gpatial step
ﬁl = deviation between time-averaged velocity and time- and

space-averaged velocity

Inan x, ¥y , 2% <coordinate system (with x referring to the longi-
tudinal; y , the lateral; and =z , the vertical), if i = 2 , the inte-
gration is over the width and a width-averaged model results. However,
if i =3 , the integration is taken over the depth and a depth-averaged
model will result. Many depth-averaged models have been developed since
Leendertse's (1967) work; whereas, laterally averaged models have only
been developed over the past five years or so. If the integration is
performed over .the complete cross section, a one-dimensional medel with
variations allowed only in the longitudinal direction results. Such
models are not considered in this study.

30. As was done in the time-averaging of the instantaneous
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equations, expressions such as Equation 13 are substituted into the
turbulent time-averaged equations to ¥ield a set of equations with the
time~averaged and spatially averaged components of the flow and thermo-

dynemic variables as dependent variables plus the additional terms

Xi+Axi/2
1

— e '
Bx, Uity Xy
X, ~hx. /2
im0

and

+
X, Axi/E

._..:l‘_ Ef——f dx
ﬂxi i i
x,-Ax. /2
N 1

As in the time-averaging case, these terms are normally approximated by

%, +Ax, /2
1 1 o o
qu, ou,
£ u'u! dx. = g! L _d
Ax, 173 i ij ij Bxi

i
xi—Axi/E
and

xi+&xi/2

L '.fv_! dx. = A'. AT
Axi i i 1) Bxi
x,-Ax, /2
i i

where eij and Ai. are referred to as "eddy dispersion coefficients"
by Holley (1969) to distinguish them from the turbulent eddy diffusion
coefficients arising from the time averaging, and % is the time-
averaged and spatially averaged temperature.

31. The resulting spatially averaged equations take different
forms, depending upon whether the averaging is performed over the depth

or the width. B8ince depth-averaged models are not applicable to the
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hydrodynamic modeling of stratified reservoirs, only the laterally

averaged equations, with B denoted as the width, are presented below:

3uiB
Continuity: =0 (1h)
X,
i
5.B  9u,u,B x
Momentum: E 1J - 1_3FB
————— ot 9x . p_ 939X
J o. i
Sg 8‘;—“1._ u
i 1l 9 i J
t et e e [Plis\ex, T ek (15)
o Yo *% i
~  3Tu.3B ~
ofp OTHB 5 .
Energy: s Bxi = Bxi (Bcij ————axj) + Z Sources - z sinks (16)
Equation of State: o = p(T) (17)

where the Coriolis terms have been neglected, the water is assumed in-

compressible, and

where
b= time-averaged and spatially averaged press
; = time-averaged and spatially averaged water density
= 1
Pij sum of €xg » Sp ? and u
Cij = sum of eddy diffusivities due to time- and spatial averaging

32, A general discussion of both time averaging and spatial aver-
aging of the equations is presented in Ward and Espey (1971), with addi-
tional details of depth averaging given by Leendertse (1967) and lateral
averaging by Blumberg (1975) and Edinger and Buchak (1979).

Vorticity-stream functicn notatien

33. The governing equations writien with the velocity and the
pressure as the dependent variables are often referred to as the primi-
tive form of the equations. An approach that is often used in two-

dimensional modeling in the field of aerodynamics, although very rarely
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in hydrodynamies, is to write the equations with the stream function and
the vorticity as the dependent variables. With the verticity defined as
the curl of the velocity, i.e., & =V x % s 1t can easily be seen that

-~

if the velocity field is two~-dimensional, e.g., % = ui + vJ , where
{ s 3 and ﬁ are unit vectors, the vorticity contains only one compo~
nent, namely cﬁ . Therefore, instead of being required to solve two
momentum equations for the veloecities w and v s & single equation for
Zz and a Poisson equation for the stream function are solved. Tn other
words, the number of equations to be solved has in essence been reduced
by cne. However, one must mske additional computations to obtain the
velocity field from the computed stream function. 5till, when the
vortieity-stream function approach is applicable, it is probably faster.
Multiple outlets at a dam would, however, prohibit its use. '

Subgrid~scale motion

34, The eddy coefficients discussed above enter the eguations due
to first of all the time averaging (diffusion coefficients) of the equa-
tions and then as a result of spatial averaging (dispersion coefficients)
to remove one or more of the independent spatial coordinates from the
egquations. A similar coefficient arises as a result of averaging the
governing equations over the numerical grid upon which a numerical solu-
tion is sought. The numerical model cannot resolve small—scalé loeal
circulation patterns or eddies unless the eddies extend over an ares
covering several grid points., Thus, as discussed by Deardorff (1970),
an averaging operator is applied to the governing equations, with aver-
aging typically being over the grid volume of the numerical calculation
to filter out the subgrid scale {SGS) motions. Explicit calculations
are then made for the filtered variables after assumptions are made
about the SGS Reynolds stresses that arise from the averaging process,
All of this, of course, is completely analogous to the manner in which
turbulent and dispersive Reynolds stresses arose in the previously
discussed time and spatial averaging.

35. The total stress then is the sum of the molecular viscous

stress, the diffusive Reynolds stress, the dispersive Reynolds stress,
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and the SGS Reynolds stress. In practice, all of these are lumped into
one stress term with a single tensor eddy viscosity coefficient. Simi-
larly, the total diffusivity in the transport equation for temperature
is the sum of four components that are lumped thether with a single
tensor eddy diffusivity coefficient.

36. In turbulent flow, these coefficients are not constant as in
laminar flow, but depend on the flow itself, i.e., on the processes
generating the turbulence. The determinationrof these eddy coefficients
in terms of the mean flow variables is a major problem in hydrodynamic
modeling. .
37. Up to this point, the eddy viscosity and diffusivity coeffi-
cients have been treated as second order tensors. Some researchers
actually allow for the tensor behavior as a function of the rate of
strain tensor of the mean flow field; however, the more common approach
is to neglect all off-diagonal terms and, furthermore, to consider the
two components in the horizontal plane to be equal. Scme modelers allow
for a variation of these coefficients, but others take a rather simplis-
tiec approach and treat them as constants over the computational field.

38. As noted by Lick (1976), the vertical eddy coefficients should
vary throughout the depth. Causes for their variations are related to
the following:

a. Btability of the water column.
b. Action of the wind on the surface.

e. Vertical shear in currents due to horizontal pressure
gradients.

. Presence of internal waves.

[a?

e. Effect of bottom irregularities and friction on currents.

One often finds the vertical coefficients related to the stability of

the water columm as a2 function of the Richardson number Ri

g 9
R =_.9__a.z__

i 22)2
0%
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where 2z 1is the vertical coordinate and u is the mean horizontal
flow velocity.

39. Horizontal coefficients are generally much greater than verti-
cal coefficients. Based upon various surface dye experiments, primarily
in the oceans, it has been found that the horizontal coefficients are
proportional to the scale of the turbulence raised to approximately the
4/3 power.

_ 40. Lick indicates that in nonstratified flow, the eddy diffusiv-
ity is approximately equal to the eddy viscosity, i.e., the Reynolds
analogy holds. Various forms that have been employed for these coeffi-

cients will be presented later in discussions on individual models.

Boundary Conditions

b1. As noted by Roache (1972), the thing that makes a particular
fluid fliow problem unique are the boundary conditions that are prescribed,
Conditions at the surface of the reservoir, at solid boundaries, and at
both inflow and outflow boundaries must be specified in order to obtain
a solution of the governing eguations previously presented.

Surface conditions

Lo, In modeling the hydrodynamics of a water body, one of two
approaches is taken in the treatment of the water surface. The surface
is either treated as a free surface or as a rigid 1id. In either case,
the heat flux at the surface must be specified as a boundary condition
on the temperature.

43, If the surface is treated as free, the assumption is made
that a water particle on the surface remains there, i.e., the surface

is a streamline. This then leads to the following kinematic condition:

3 3 3L -
T ety el 0 (18)
for the computation of the water surface elevation, ¢ . In addition,

the internal stresses in the fluid must equal those applied externally

to the surface. Considering a vertical-longitudinal two-dimensional (2-D)
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reservoir, for laminar flow the normal internal stress at the surface

T is
n

2 3u g1 oW 2 ow
T o + —— — — =
Tn P 2u [n 5 nxnZ (Bz + Bx) + nZ az]

and the tangetial internal stress at the surface can be expressed as

t
_ . u_ dw 31_1__33:22)
Tt - anZEu (Bx - Bz) T H 9z * Bx) (nz - nx

where, as illustrated in Figure 3, nX and n are the x and =z

' 11\\ <

///////////////////////////

Figure 3. Orientation of unit normal to the surface

components, respectively, of the outward unit normal vector tc the sur-
face. The above expressions have been derived from the stress force
t given by

t=n-T

-—s
where, as noted, n is the unit normal to the surface and T is the

laminar stress tensor for incompressible flow, given by

Bui au,
} = - + e —dJ
le Pﬁij ¥ axj * axi

Now the externally applied stress will be a normal stress as a result of
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atmospheric pressure and 4 tangential stress imparted by the wind;

therefore, the boundary conditions become

du _ dv (Agﬂ)é’ 2\ _
Qanzu(ax - Bz) s 3z | ox (gz - nx)'— TWIND

and
= 2 du ou | dw 2 3w
_Pa =P+ 2“[%x 5% nxnz(az + Bx) +n, Bz]
where
TWIND = wind ghear stress
P = atmospheric pressure

a
Thus, in a strict application of the stress boundary condition, the

orientation of the surface, i.e., n_ and 0 would have to be known.

Since for a large water body the surface is at least locally flat, the

assumption of a flat surface is normally made so that

The stress boundary conditions then reduce to

du |, ow\ _
u(az + Bx) = Tunp

_ aw
P-—-P.a—QuBZ

Lk, In addition, if the hydrostatic pressure assumption is made,

i.e., vertical accelerations are neglected, the above conditions take
the form below that is commonily found in the literature, where the
molecular viscosity wu has been replaced by its turbulent eddy
counterpart, Ev .

e 2u _

v 3z  WIND

at free surface
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45, When the surface is treated as a rigid 1id, it becomes in
essence & solid boundary, and the normal compcnent of the velocity must
be zero. In addition, the pressure can nc longer be prescribed at the
surface, but rather must be computed. The pressure boundary ccndition
now takes the form of a derivative boundary conditicn, i.e., a Neumman
condition as opposed to the Dirichlet condition for the free surface
cage. The primary reascn for assuming that the surface is a rigid 1lid
is connected with stability problems encountered in the numerical solu-
tion of the governing equations and will be discussed later. It should
be obvious that with the rigid 1id spproximation, the effect on the
internal flow of the piling up of water cannot be accounted for.
Modelers such as Liggett (1970) and Lick (1976) have employed the concept
in the development of lake circulation mcdels. However, cthers such as
Eraslan* and Edinger¥¥ feel that the rigid 114 approximsticn associated
with a uniform water surface assumptlcen is not realistic in the develop-
ment of mathematical models for envirommental flow conditicns and that
the water surface elevation must be considered as an integral part of
the general sclution of the hydrodynamic problem,

S8clid boundaries

h6. For viscous fluids, the fluid velocity is actually always

zero at a solid boundary; i.e., bdth the tangential as well as the normal
components are zero. This boundary condition is referred to as a '"no-
slip condition.”" Although in theory such a condition must always hold

at a solid boundary, often in hydrodynamic modeling a slip condition is
employed. This condition is implemented by setting the component of the
velocity normal to the wall equal to zero but not the tangential; i.e.,
the flow slides freely along the so0lid wall. Theoretically, this implies
that the flow is inviscid. Therefore, proper boundary conditions for

a slip wall are that the normal velocity is zeroc as ﬁell as that the

vorticity is zero at the solid wall, since vorticity is created in

¥ Personal communication, May 1979, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.

¥% Personal communication, May 1979, J. E. Edinger, J. E. Edinger
Associates, Inc., Wayne, Penn.
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viscous regions. The tangential compenent of velocity is then deter-
mined from the zero-vorticity condition. However, it does not appear
that this is the approach usually taken in hydrodynamic modeling. 1In
most cases, as will be discussed later, a staggered grid is used in
oﬁtaining a numerical sclution such that the tangential component of the
velocity is not defined at the wall. Instead, its value must be speci-
fied outside the wall. The usual Procedure taken by most hydrodynamic
modelers for slip walls is to set this value equal to its value inside
the field.

47. The major reason for using slip boundary conditions is
apparently related tc the fact that a relatively large grid spacing is
normally required in hydrodynamic modeling for economic reasons. With
such a grid spacing near a solid boundary, if nc-slip conditions are
applied, the boundary layer effect extends farther into the field than
it does in reality.

48, In addition to conditions being imposed on the flow field at
solid boundaries, information about the heat transfer must also be
specified. Either wall temperatures or the heat flux may be prescribed.
In all reservoir- or lake-type modeling that has been investigated, the
sclid houndaries are assumed to be adiasbatic, and thus the heat flux
through the boundary is set to zero.

Open boundaries

L9. Open boundaries are exactly what the name implies, i.e.,
boundaries that are open such that fluid may either enter or leave the
field within which a solution is sought. Such boundaries are known as
either "inflow" or "outflow" boundaries.

50. At forced open boundaries (inflows are always forced), either
flow, i.e., velocities, or water surface elevations (assuming a free sur-
face), must be prescribed as a function of time along with the tempera-
ture. Thecretically, rather than expressing either the flow or surface
elevations, one could specify = relationship between the two. Such a
boundary condition, known as a rating curve, is often prescribed at the
dovmstream end of cne-dimensional unsteady flow models of riverflows.

51. At outflow boundaries that are free rather than forced, e.g.,
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free flow from an opening at a dam, one cannot prescribe the flow
directly since it obviously is dependent upon conditions within the
computational field. In the temperature computations, an outflow bound-
ary i1z always considered free. A boundary condition that allows phencm-
ena generated in the domain of interest to pass through the boundary
without undergoing significant distortion and without influencing the\
interior solution is needed. Since a physical law to prescribe such a
boundary condition does not exist, some kind of extrapolation from the
interior must be used. The most common methods used are either a
Sommerfeld radiation condition or perhaps one-sided differences when
employing finite differences to obtain numerical solutions.

52. The dispersion characteristics in one dimension of the waves

needed to prescribe the Sommerfeld radiation condition are known as

3¢ ¢ _
a6 " Cax ~ O (19)

where ¢ dis any variable and € 1s the phase velocity of the waves.
The dispersion characteristics are not generally known, since € is

not generally a constant. A simplification often used to avoid this
problem is to assume that the characteristics of the waves will have a
slope equal to Ax/At (Ax and At being the spatial and temporal grid
steps, respectively). Then the extrapolated variable ¢ at the present
time t at the boundary point J 1is given by

t_ _ t-At  t-2At
b7 = 2051 - $50

A more accurate use of the Sommerfeld radiation condition, Equation 19,
is presented by Orianski (1976). Instead of fixing a constant value
for the phase velocity, Orianski numerically calculates a propagation

veloclty from neighboring points.
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PART III: NUMERICAL DISCUSSIONS

53. The governing equations of fluid motion are nonlinear partial
differential equations, which in a strict mathematical sense, are classi-
fied as being of the parabolic type. However, outside the boundary
layer the equations exhibit a strong hyperbolic or wave character due to
the convective terms and, thus, are often considered as being of the
- hyperbolic type. In any case, because of their nonlinearity, analytical
éolutions do not generally exist and one must resort to numerical methods
to obtain an approximation of the continuous solution of the differential
equations. Such methods include the use of finite differences and finite

elements.

Finite Element Method (FEM)

54, In the finite element approach, the field is divided into
finite elements, and the solution is approximated by a chosen function on
each element. This function contains free parameters, which are evalu-
ated by requiring the function and perhaps certain of its derivatives to
equal the solution and its derivatives at certain points con the element.
If the partial differential equations can be exbressed in terms of inte-
gral variational principles, the variational integrals over each element
are evaluated analytically from the chosen approximation functions on
each element. The integrals over each individual element are then summed
over all the elements to produce the variationsal integral over the entire
field. This result contains the unknown values of the solution and per-
haps some of its derivatives at all the points used above in the deter-
mination of the parameters in the approximating functions. The varia-
tional integral is then minimized in terms of these point values of the
solution and derivatives involved. If the partial differential equations
cannot be expressed in terms of variational Principles, then the method
of weighted residuals (Galerkin) must be used. Here the solution is
again approximated on each element as above. However, instead of the

evaluation of variational integrals, integrals of the products of Weight
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functions and the partial differential equations are evaluated on each
element. This produces a set of simultaneous algebraic equations to be
solved for the values of the solution and perhaps some of its derivatives
at certain points on the elements.

55. The finite element approach is best suited to partlal dlffer—
ential systems that can be expressed in terms of a variational principle.
In this cage, the boundary conditions canrbe incorﬁorated naturally by
means of Lagrange multipliérs. Yor more general systems, partlcularly
nonlinear systems that are not expre551b1e in terms of wvariational prin—
ciples, the finite element approach must use the method of weighted
residuals (CGalerkin) whereby a functional fbrm of the_solution in each
element is assumed and integral moments of the partial differential equa-
ticons are satisfied over the field as noted above. With this ﬁrocedure,
the partial differential equations themselves are not actually satisfied.
Boundary conditions are incorpoféted in the assumed functional form of
the solution in the elements adjacent to the boundaries.

56. The finite element method has enjoyed iis greatest success in
the field of solid mechanics where for the most part variaxionai rather
than difference methods are used. As Fix (1975) notes:

"The reason for this is partly physical. The equa-
tions of elasticity can be put into a variational
form and engineers have found this to be the most
physically natural setting to formulate approximations.
In addition, the varlational approximations—-finite
elements—-have other properties that are of great
value in practice. Complicated boundaries can easily
be treated in this setting; singularities in the solu-
tion can be modeled in the spproximation; and, in
dealing with higher order methods with increased re-
solving power, the practical problems are much less
troublesome than with difference schemes."

_ 57. Perhaps the major practical disadvantage of the finite element
method as applied to hydrodynamic problems is that a large amount of com-
puting time is required for such time-dependent problems. It might be
noted that in most finite element models, differences are still employed
in handling the time derivative. The reason the method is slow is that

it creates dense matrices to be inverted, as opposed tc the sparse
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matrices that result from using differences. A common rebuttal by finite
element modelers to this criticism is that since implicitness is central
to the finite element approximation, implicit time differencing should
be employed to yield an unconditionally stable system and thus, the use
of larger time steps compensates for the large computing times required
to invert the dense coefficient matrices each time step. However, it
should be remembered that in addition to stability considerations, one
must first of all be concerned with the accuracy of the solution. When
using finite differences, it can be shown that as the computational time
: step becomes inereasing larger than that allowed by the Courant condi-

tion for gravity waves, e.g., in one dimension

[
B

o
8
=

where
Atc = time step restricted by Courant condition
h

a corresponding increase in the number of spatial points per wavelength

water depth

must occur to retain the same level of accuracy in the amplitude and
phase of the computed wave. Leendertse (1967) indicates that from a
practical standpoint, generally the time step should not be greater than
3-5 times Atc in the difference scheme he employs to compute vertically
averaged flows. Abbott (1979) and his colleagues at the Danish Hydraulic
Institute (DHI) have arrived at a similar conclusion for the difference
scheme that they employ. Edinger and Buchak (1979) have indicated that
for the laterally averaged case, the time step should not exceed 3-5

times the At computed from the internal wave condition given by

where

Ap = change in water density
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Such an analysis of the error between the computed and analytic wave in
the FEM has not been found in the literature.

58, In the deelopment of a new model, an often stated disadvan-
tage of the finite element method is that the FORTRAN coding is much
more cumbersome than with finite differences. Of course, if the model
already exists, such a disadvantage is of no concern to the user unless
extensive modifications are required, in which case the cumbersomeness
of the coding might well become a major consideration in the model

selection.

Finite Difference Method (FDM)

59. The vast majority of the numerical hydrodynamic models,
whether they be one-, two-, or three-dimensional, employ the use of
finite differences to obtain solutions of ihe governing equations of
fluid motion. In the finite difference method, the domain of the indepen-
dent variables is replaced by a finite set of points referred to as net
or mesh points. One then seeks to determine approximate values for the
desired solutions at these points. The values at the mesh points are
reguired to satisfy difference equations that are usually oblained by
repiacing partial derivatives by partial difference guotients. The re-
sulting set of simultaneous algebraic equations is then solved for the
values of the solution at the mesh points. If the boundaries do not
coincide with mesh points, then the finite difference approach applied
to the equations in a Cartesian coordinate system requires interpolation
between mesh points to represent boundary conditions.

60. However, through coordinate transformations, irregular bound-
aries can be accurately handled while still making use of the simplicity
of finite differences to obtain solutions. The most general of such
transformations, which will be discussed in more detail later in the re-
port, is a method developed by Thompson et al. (197L4), which generates
curvilinear coordinates as the solution of two elliptic partial differen-
tial equations with Dirichlet boundary cconditions, one coordinate being

specified as constant on the boundaries, and a distribution of the other
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specified along the boundaries. No restrictions are placed on the irreg-
ularity of the boundaries, and fields containing multiple bodies or
branches can be handled as easily as simple geometries, Regardless of
the shape and number of bodies and regardless of the spacing of coordi-
nate lines, all numerical computations, both to generate the coordinate
system and to subsequently solve the fiuid flow equations, are done on

a rectangular grid with square mesh.

61. Since the boundary~fitted coordinate system has a coordinate
line coincident with all boundaries, all boundary conditions may be
expressed at grid points, and normal derivatives may be represented
using only finite differences between grid points on coordinate lines.
No interpolation is needed, even though the coordinate system is not
orthogeonal at the boundary.

62. Linear transformations that allow for the physical dimensions
to be mapped between the values of 0O and 1 have been employed. For
example, as will be discussed later in PART IV, Lick (1976) maps the
vertical dimension in such a manner to represent bottom topographies
more accurately.

Discrete element concept

63. BEraslan employs a numerical technique that he labels "the
discrete element method.” However from a conceptual standpoint, the
primary difference between the finite difference method as it is normally
applied and the discrete element method appears to be that the mathemati-
cal development of the discrete element method is based on employing the
control volume integral forms of the physical conservation Principles;
whereas, the usual application of the finite difference method begins
with the continuum limit differential equations presented in PART II.

64. Eraslan indicates that the application of the discrete element
method to the solution of environmental fluid mechanics problems is based
on the following procedure:

a. Divide the flow region into arbitrarily sized discrete
elements, preferably with geometrically simple (rectangu-
lar) enclosure surfaces except at the boundaries, such
that the finite number of discrete elements completely
spans the region.
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b. Integrate the volume and surface area integrals of the
physical conservation equations without assuming uniform
values for the flow properties over the surface areas.
This produces a governing semidiscretized system of ordi-
nary differential equations in time.

¢. Apply proper interpolation techniques for determining
transportive values of the flow properties between dis-
crete elements.

65. As an example of the discrete element concept, consider the

one-dimensional problem illustrated in Figure 4. Neglecting frictional

DISCRETE ELEMENT

T

W_’ ‘ i+1/2
ITTTTTTT 77 ,
i~ 172 ///l VAN
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Figure L. One-dimensional discrete element

effects, the integral forms of the conservation of mass and momentum can

be written as

Continuity: f]’f av_ +ff w0
Momentum: [jfvdv +f[ ¥ .naa-= j’f (21)
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where
dV = differential volume
ev = volume of discrete element

A = Area of discrete element

cv
% = velocity vector

dA = differential area
>
i

= force vector

Now define

G = j:[ 1 dA = volumetric flow rate.
A
cv

Therefore, from Figure k4

also,

oH

3 _ 98 - i
5% f [ f AV, = 5% (8x;4;) = Ax;B, —
eV

where Bi is the surface width and Hi is the surface elevation.
Therefore, the discrete element eguation for the conservation of fluid

mass becomes

Mo
3% - bx,B, (Gi-l/e - Gi+J./-2) (22)

Considering the surface integral for the momentum flux over the cross

section Ai at the center of the element yields

>> »
fj vv - n dA = uiGi + Reynolds stress terms
A
ev
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Neglecting the Reynolds stress terms, which arise due to writing the
velocity as the sum of a time-averaged and spatially averaged component
plus its time and spatial deviations, the integral form of the momentum

equation applied to one-half of the discrete element becomes

3G
i-1/4 _ 2
ot bx, (Giwl/Qui—l/e - Giui)

* %ﬁ; [Ai-l/E(ﬁi—l/2 - Hi—l/u) -.Ai(gi - Hi—l/h)]_ (23)

66. Equations 22 and 23 both take the appearance of finite differ-
ence equations in which the time derivative has not been replaced by
differences. It appears that from a practical consideration, the primary
difference between the discrete element method and the application of
finite differences to the differential eqguation centers around what might

T

be called "the conservation of geometrical properties,” as reflected

through the definition of the divergence of a variable. In the equations

.ll[' 3 - nan
A .
eV

appear. Considering the element below,

of motion, flux terms such as

3>

)
——— = -

S

and working with only the x direction, the flux integral above can be

-evaluated as
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ff 5 -ﬁdA=(¢A)+— (¢4)_
A
cv

Now, if one employs Gauss's Divergence theorem, the flux integral can

be written as

> - > - >
ffA¢-ndA=fff (v« 8) av = (v - §) axa,
cv cv

2 . . . . .
where V » % is the divergence of ¢ . The tiwo previous expressions
can be equated, and one can derive an expression for the divergence over

the ith element as

(v . 5)1 = AXJ:-;AJ-. [(48), - (¢4)_]

or

(- 9. -3 ()
i

1

In the usual derivation of the differential form of the equations, the

divergence is written as
>
Ve p== (25)

Equation 24 might be referred to as the "geometrically conservative"
form of the divergence; whereas, the normal definition as given by Equa-
tion 25 would be referred to as the "geometrically nonconservative" form.

67. Note that bhysically the difference between the two forms is
that in the conservative form (Equation 24), the area through which the
flux of ¢ flows is that of the bounding faces through which the flux
actually occurs. In Equation 25, however, the influence of the respec-
tive areas on the flux through the boundaries is not allowed.

68. It appears that if the conservative form of the divergence is
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used in expanding the vector form of the governing differential equa-
tions, the finite difference method applied to those equations becomes
jdentical to the discrete element method if the same interpolation scheme
is used to provide values of the dependent variables at points where

they are not defined in the grid.

Finite difference spatial grids

69. The spatial grid in Cartesian coordinates most commonly used
by numerical hydrodynamic modelers appears to be one in vwhich the water
surface elevation, temperature, and density are defined at the center of
a computational cell; whereas, the velocity components are defined on
the faces of the cell. Such a grid is illustrated below for a two-

dimensional problem.

-

—"-'hlpoT

With such a grid, the normal component of the velocity at solid bounda-—
ries can easily be set to zero if the boundary is assumed to lie along
cell faces, which is the usuai assumption.

70. With such a grid one obviously will need values of variables
at points where they are not defined in order to numerically solve the
governing equations. One solution is to utilize more than one grid,.
with the variables defined such that a solution on one grid is used to
step the solution forward on another grid. As discussed by Simons
(1973), such a procedure can result in semi-independent solutions on the
different grids. The numerical error associated with the use of more

than one grid is known as a "grid dispersion error." The approach
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normally taken to provide the variables at net points where they are not
computed is to perform an interpolation within the grid. Simons shows
that conservation requirements are satisfied if the unknown values are
approximated by simple linear interpolation.

Tl. A grid often used in aerodynamic flow modeling has all vari-
ables defined at the same point, i.e., at the cell center. Such a grid
(shown below) has been employed by Waldrop and Tatom (1976) in their

three-dimensional hydrodynamic modeling work.

J+1/2

y /’

Lu v, P, T, p

J-1/2

1-1/2 1 P +1/2

T2. Still another grid is currently being employed by Thompson¥

in the development of a model for use in selective withdrawal studies.

u, v
J+1/2
P.T.p

Rt
ot -

I -1/2 | 1+1/2

¥ Personal communication, April 1979, J. F. Thompson, Mississippi State

University, Mississippi State, Miss.
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In this grid, all velocity components are defined at the same point,
i.e., the cell corners; whereas, all thermodynamic variables are defined
at the cell center. Thompson indicates such a grid allows for a more
natural application of velocity and pressure boundary conditions iu a
curvilinear coordinate system.

73. Most numerical finite difference hydrodynamic models employ a
constant grid size in each direction. However, models have been devel-
oped that allow for the size of the computational cell to vary over the
region within which flow computations are being made in order to increase
the resolution in. certain areas. ZExanmples are the 3-D models of Tatom
and Waldrop and Thompson's 2-D model that utilizes boundary-fitted coor-
dinates. As discussed by Roache (1972), there are two approaches to the
" implementation of a variable computational mesh. One can merely solve
the given equations on a grid that has physically been constructed such
that the computational nodes are not evenly spaced, or one can transform
the equations and solve them in a transformed rectangular plane with
equal grid spacing, although the grid spacing is not equal over the phys-
ical region. Even though the two approaches might sppear to bpe similar,
Roache indicates they are fundamentally different. When the untrans-
formed equations are differenced in the variable mesh, the result is a
deterioraticn of formal accuracy, but the transformed equations may be
differenced in a regular mesh with no deterioriation in the formal order
of truncation error relative to the transformed plane. Roache, there-
fore, states that the coordinate transformation approach, which can be
used for the purpose of aligning coordinates along physical boundaries
as well as increasing resolution in certain areas, is to he preferred.
As previously noted, Thompson's boundary-fitted coordinate technique
provides the mosf general such transformation that can be attained.

Time differencing

T4, As previously noted, time integration is performed by finite
differences even in the finite element method. Such time differencing
can basiecally be classified as either explicit or implicit. For either
type, one can construct first, second, or even higher order schemes;

although Kreiss (1975) indicates that second order schemes are to be
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preferred if one combines accuracy with considerations of economy and
simplicity. As an additional classification, one often finds time—
differencing schemes referred to as one- or two-step schemes.

75. In order that these cbncepts‘may be better understood, con-

sider the following basic equation:

ﬂ+u3i—au (26)

76. If u is zero, this equation is the parabolic time-dependent
diffusion equation in which the dependent wvariasble ¢ can change only
through the second order derivative dissipative term. If the diffusion
coefficient a 1is zero, the equation is a hyperbolie wave-type equation
in which ¢ can vary only through advection by the veloecity u .

TT. Assuming that ¢ is continuous and possesses continuous

derivatives, a Taylor series expansion in time yields

2 .2
o(t + At) = ¢(t) +At%%+é3’2—§—g+ o(az3) (27)
3t

thus, one can solve for 8¢/3t as

2
g_ia: $(t + Azz - ¢{t) +%ga_%+ 0(at2)
ot

or

30 _ o(t + At) - ¢(t)

s T + 0(at) (28)

This is called a "forward difference" representation of the time deriva—
tive and as indicated by the notation O{At) is only first order.

Likewise, one can write the Taylor series as

2 .2
$(t = At) = o(t) - At %E— + ‘gf——:—% + o(at3) (29)
Toot
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so that

2 p(t) - g}ct =A%) L o(at) (30)

which is known as a "backward difference." As with the forward differ-
ence, such an expression is only a first order scheme. If one subtracts

Equation 29 from Equation 27, the following results

%% - b(t + At)zgtq’(t - A%) + O(Ate) (31)

This expression is referred to as a "centered difference" representation
and is a more accurate integration scheme as At~»0 , since it is of
second order in time.

78, Applying a forward differencing of the time derivative in

Equation 26 yields

n
2
ntl _ .0 3 39
= + —
by b; + At|-uTE+ 0 (32)
0xX {.
i
which is known as an "explicit time-integration scheme," since values at
the n + 1 time 1efel can be computed directly from known values at
the previous time level n . In addition, such a scheme is labeled as
a one-step scheme, since only one sequence of computations is required.
79. Likewise, applying a hackward differencing to the time

derivative yields

2 n+l
n+l _ n 89 %0
65 ¢ * OF|-u oo+ a 2 (33)
i

which is labeled as an "implicit time-integration scheme," since values

at the :'Lth spatial point on the n + 1 +time level are dependent upon
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not only values at the n time level but also values of ¢ at surround-
ing spatial points on the same time line. Implicit schemes require the
simultaneocus solution of a system of algebraic equations and, thus, are
more complicated than the explicit integration schemes. However, as will
be discussed later, implicit schemes are more numerically stable. As
with Equation 32, Equation 33 would be labeled a one-step method. Vari-
ous degrees of implictness can be realized by positioning the spatial
derivatives between the n and the n + 1 time step. (Equation 33,
for example, is fully implicit.)

80. If one employs the centered integration scheme, the following

results

n
2
R R A (31)
X 3x2

which is also an explicit scheme, but as previously noted is of second
order in time. It might be noted that the above scheme is unstable if

o # 0 . However, it can be made stable by evaluating (a)32¢/8x2 at

the n - 1 level. Schemes that utilize centered differences in time

are often referred to as leapfrog schemes., A characteristic of centered
difference schemes is that in addition to the primary solution, a compu-
tational mode can also exist and results in a time-splitting of the solu-

tion. Consider the simple equation

of _
vl 0

The analytic solution of this equation is £ = constant . However, its
+ -
numerical solution using centered differences is f° 1= £ 1 . Thus,

the following solutions are possible:
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A‘/POSSIBLE NUMERICAL SOLUTION

NS N NS N\ . ANALYTIC SOLUTION

n-1 n n+1
t

It is easy to see then that a time-splitting of solutions can occur when
using centered differences to replace the time derivative. One method
of suppressing such a splitting is to employ a smoothing technique at
some regular interwval of time steps during the computations.

81. All of the time-differencing schemes above are one-step meth-
ods. An example of a two-step scheme is that of Heun, as discussed by

o
Roache (1972). In Heun's scheme one first solves for ¢n 1 using a

forward differencing, i.e.,

n

2
~n+
P = ot e at | ~uay e g 28 (35)
ax
and then ¢n+l is determined from
2 P ~ 7ol
¢n+l = % + A 1 ar 28 4 o 20 4 |_uar 224 o 20 (36)
2 ax ax2 9x 3x2

It can be seen then that the solution is obtained from two computational
steps and thus Heun's integration scheme is referred to as a two-step
scheme.

82. As previously noted, higher order time-differencing schemes
can be constructed. These can be devised through the utilization of
more time levels or perhaps in the following manner. Consider the hyper-

holic equation
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¥, (37)

n+l n-1 2 .3
3 _ 9 -9 At™ 379 3
ot e 3 R o{at”)

where five time levels would be required for a centered difference repre-
sentation of the third order time derivative. However, through a sequence

of time and spatial differentiation of Equation 37, one can show that

thus, a third order time-differencing scheme of the basic equation'could

be written as

n+l n-1 3.2 31"
o7 - o2 | ae, a3
At 39X 3 8x3

The only numerical hydrodynamic model found in the literature that is

of higher order than two in time is a vertically averaged model devel-
oped at the Danish Hydraulic Institute, which, according to Abbott (1979},
is "close" to third order.

Space differencing

83. 4As in the discussion on time differencing, either first,
second, or higher order differencing of spatial derivatives can be uti-
lized to create different order finite difference schemes. Once again,
Taylor series expansions in sSpace y;eld the following expressions for

forward, backward, and centered differences of a spatial derivative:

h9



by - ¢
Forward: g$-= e N + 0(Ax)
—_— X Ax

b = .
Backward: B¢ 1 i1, 0(Ax)
—_ 9x Ax

. - &,
i+l i-1 +

2)
2AX%

Centered: %%-= o(Ax

Thus, one can see that if a forward difference is used in both space
and time, a scheme that is completely first order, i.e., O(At,Ax) ,
results. Likewise, the use of centered differences in both space and
time results in an O(AtE,Axe) scheme.

84. As with centered differencing of time derivatives, the use of
centered differences to replace spatial derivatives can result in a com-
putational mode. This is illustrated by considering the solution of

of _
3ax 0
where the analytic solution is f = constant . Thus, similar to its

time counterpart, numerically the following soiution can develop:

f, |- P IBLE MERICAL SOLUTION
2 "\ ,o\ /o“ ,o \/ 0SS NU S0
Sy N 1

/
gl NS NS NS N\ e ANALYTIC SOLUTION

85. A major problem associated with space differencing is the
treatment of the nonlinear advective terms. The nonlinear terms tend to
generate higher harmonics, which can result in what Phillips (1959) called
a "nonlinear computational instability." As noted by Roache (1972),

this problem is not unique to nonlinear systems, but can occur whenever
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nonconstant coefficients appear in the differential equation. An effec-
tive method to suppress higher harmonics is to introduce eddy diffusion
or smoothing. One scheme that tends to introduce artificial damping of
the higher harmonics without appreciably affecting the long waves, 1l.e.,
the solution of interest, is the two-step Lax-Wendroff scheme which com-
bines Lax's forward-in-time and centered-in-space scheme as the first
step with a centered~in-time and centered-in-space scheme for the second
step.

86. The use of either forward or backward spatial differences to
represent the advective terms of the transport eguation is cldsely re—
lated te the characteristics of the hyperbolic equation. Consider the
case of o = 0 in Equation 26. The transport equation then states
that D¢/Dt = 0 along the characteristic direction given by dx/dt = u .

Therefore, from the illustration below

3]
n 0i
d _
dt
n-1
0n-1
i-1 i i+1
¢? must be equal to ¢ﬁ_l . If u 1is positive, the characteristic lies

as shown; whereas, if u 1s negative, it falls between i and 1 + 1

on the n - 1 1level. The major problem in determining ¢? is to deter-
mine ¢2_1 . If linear interpolation is used between i1 and i -1,
the resulting expression for ¢? corresponds to the use of s forward-
in-time and backward-in-space representation of the basic equation.
However, if u 1is negative and a linear interpolation between i and

i1 +1 is employed, the resulting expression is equivalent to the use of
forward differences in the spatial derivative. If a linear interpolation
from i -1 to 1+ 1 is used, centered differences result. In addi-
tion, one could use higher order interpolating schemes such as a qua-

dratic polynomizl to interpolate between i -1, i, and i + 1 which
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¢ . . 2
yields Leith's scheme (Roache 1972}. This scheme is O(Atg, Ax") , even

though only two time levels appear in the difference equation. It can
be shown that this approach is equivalent to replacing the second order
time derivative in the series expansion by a second order spatial deriva-
tive, as previously discussed.

87. One-sided differences, i.e., the forward or backward schemes,
introduce an artificial dissipation into the solution similar to the
case where o # 0 ; whereas, centered differences do not introduce this
dissipation. However, the one-sided differences preserve what is labeled

' which is not the case

by Roache (1972) as the "transportive property,’
with centered differences. The transportive property is related to .
whether the parameter ¢ 1is numerically advected solely in the direc-
tion of the flow, as theoretically it should be.

88. In the space differencing discussed above, only first or
second order schemes have been discussed. However, higher order spatial
schemes can be developed and have been utilized, in particular in the
work of Abbott (1979). In the DHI models (Hinstrup 1977), Everett's
12-point interpolating polynomial in two dimensions is used to generate
a fourth order transport scheme that conserves mass, advects correctly
the center of mass, i.e., maintains the transportive property, has no
artificial dispersion (proportional to 32¢/3x2); and in addition con-
serves third and fourth moments of the distribution of ¢ . A disadvan-
tage of such higher order schemes that extend over several grid points
is the difficulty encountered near boundaries.

89. Holly and Preissman (1977) present a method of constructing
higher order schemes that utilize only two grid points. Their method
centers around the use of Hermitian interpolating polynomials rather
than interpolating polynomials that extend over several net points.
Hermitian polynomials are constructed such that not only the function
but also derivatives of the function are required to satisfy known con-
ditions at only two points. Numerical schemes based on this concept are
referred to as "two-point higher order" methods to emphasize the fact
that by using function derivatives, one can obtain higher order one-

dimensional schemes using information at only two points. In fact, the
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authors indicate that results from comparative studies show that the use
of derivatives to obtain a third degree interpolating polynomial is more
accurate than one using a third or fourth degree polynomial based on
additional points.

90. Such & method, of course, requires both the dependent variable
and its space derivative as initial and boundary conditions. However,
through an example application, Holly and Preissman {1977) show that the
inconsistencies introduced between the dependent variable and its deriva-—
tives as estimated from initial given values of the variable will have a
minor influence on the results. Although an extension of the method to
two dimensions is not presented, some preliminary computational results
are. The authors indicate that such an extension to two dimensions pre-
serves the favorable accuracy characteristics observed in one dimension.

Consistency, con-
vergence, and stability

91. A finite difference scheme is said to be consistent if when
one expands the discrete system in Taylor's series form by retaining the
higher order terms, all the terms of the differential equation (with
possible additional terms) are generated. In addition, in the limit as
the time and spatial steps approach zero'independently, all of the addi-
tional terms must go to zero.

92. In order for a numerical solution to be meaningful, it must
be a good approximation of the exact solution of the differential equa-
tions. Convergent finite difference schemes are those for which the
solution of the difference equations converges to the exact solution as
the size of time and spatial steps approach zero. The convergence of
finite difference solutions of the nonlinear equations governing fluid
motions cannot be proved analytically, and thus, one must resort to the
use of intuition or preferably a comparison of numerical results with
laboratory and/or field data to demonstrate that the numerical scheme
does indeed model the physical processes represented mathematically by
the governing differential equations.

93. In a rigorous, mathematical sense, a finite difference scheme

is stable if two solutions that are arbitrarily close to each other at a
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given time remain arbitrarily close for all time. In a practical sense,
one considers a particular scheme stable if the solutions do not grow
unbounded. For economic reasons, in the numerical calculation of space-
and time-dependent hydrodynamic problems, one desires to use as large a
space and time step as possible and still obtain the desired level of
accuracy and physical detail. However, in addition to these restric-
tions, the stability of the finite difference scheme dictates the size
of the integration difference steps that can be employed.

94. Explicit finite difference schemes are conditionally stable;
i,e., stable computations will result so long as the space and time steps
satisfy what are known as "stability criteria." In free surface hydro-
dynamic modeling, the most severe of these criteria is usually the

Courant condition on a gravity wave,

At < Ax

/gh

which states that the time and spatial steps are restricted such that a
gravity wave will not propagate over more than one spatial step within
the prescribed time step. Additional stability criteria presented

below
At < Ax/u
2
At < Az"/2A
At < Ax/ 2—" gh
are related to the veloecity of a fluld particle, the rate of diffusion,
and the speed of internal waves, respectively.
95. All or some of these restrictions may he eiiminated by various

finite difference schemes. For example, fully implicit schemes can be

constructed that are unconditionally stable, at least in a linear sense;

whereas, mixed implicit-explicit schemes, such as that of Edinger and
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Buchak (1979), may be constructed to remove one or more of the more
severe criteria while continuing to be restricted by the less severe
ones, Fach finite difference scheme has its own advantages and 4iffi-
culties, and which scheme is best often depends upon the particular
pProblem. For example, one may be able, from a stability standpoint, to
use an unlimited time step in an implicit scheme as opposed to perhaps
a rather small time step in an explicit scheme. However, if the physi-
cal character of the problem, such as rapidly varying input boundary
conditions, forces the use of a relatively small time integration step
in the implicit code, one may find that an explicit model is actually
more economical due to the simplicity of the solution teéhnique.

96. Stability of a finite difference scheme can be related to the
concept of artificial viscosity or diffusivity, which has been previously
discussed. Using Hirt's method of analysis, as opposed to the more elab-
orate von Newnann analysis in which the growth of a Fourier component is
investigated (see Roache 1972), comsider the stability of a forward-in-

time and centered-in~space representstion of Fquation 26:

ntl _ .n uAt (n -.n Ata (.n n n
L Ty (¢i+1 - q’i-l) ¥ 2ax (¢i+1 -yt ¢i-1) (38)

Replacing the discrete values above by a Taylor series expansion and

making use of the initisl differential equation yields

2 2
g% +u gii = (a - ugAt) ngé + 0(At) + 0(Ax") (39)

It can be seen that as At and Ax>0 » the above equation reduces to
the original differential equation; therefore, the difference scheme is
consistent. However, it will not be stable unless the effective dissi-
pative coefficient o - uBAt/E is greater than zero, since the physical

nature of such a coefficient is to smear a disturbance. Thus, a negative
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coefficient is a physical impossibility. The term —u2At/2 is referred
to as the "negative artificial viscosity" or "diffusitivity" of the
scheme. One can now see why a forward time integration with centered
spatial derivatives will result in a completely unstable scheme when
applied to pure hyperbolic equations, i.e., a = 0 in Equation 26.

If backward differences (u > Q) are used to replace the spatial deriva-

tive, the effective dissipative coefficient becomes
2
a, =@ + uAx/2 - uTAt/2
Therefore, one-sided differences for spatial derivatives increase the

effective dissipative coefficient, which results in a more stable,

although theoretically less accurate, scheme,
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PART IV: THREE-DIMENSIONAL HYDRODYNAMIC MODELS

97. A relatively wide range of numerical three-dimensional hydro-
dynamic models currently exist. All that have been investigated utilize
finite differences to obtain numerical solutions of the governing equa-
tions and furthermore all employ explicit time differencing. The gen-
eral opinion in the past concerning the use of 3-D implicit schemes has
been that due to the extremely large matrices that have to be inverted
for a completely implicit model, such schemes would require excessive
computing time. TIn addition, apparently schemes such as Leendertse
(1967) employs in his two-dimensional work (alternating dirvection
implicit--ADI) have not been used for various reasons. First, such
schemes require all computational arrays to be in the computer's fast
memory for efficient computation, which would rut a considerable re-
straint on the array sizes of a three-dimensional model. In addition,
such schemes place restrictions on the formulation of the finite aif-
ference representation of various terms in the equations.

98. The time-dependent and variable density three-dimensional
models of Simons (1973), Lick (1976), Leendertse et al. (1973), Waldrop
and Tatom (1976), and Spraggs and Street (1975) are discussed in some
detail below. Other less general three—dimensional numerical hydro-
dynamic models exist, such as those of Gedney and Lick (1970), Liggett
(1970}, and Bonham-Carter et al. (1973). However, for the computation
of flows in stratified reservoirs, only those models that are time--

dependent and allow for a variable density are of interest.

Simons' 3-D Lake Model

99. The modeling of stratified fluid flow may be accomplished in
two ways: (a) a layered model in which the fluid is made up of discon-
tinuous layers within which all fluid properties such as density and
viscosity are uniform and (b) a continuous model in which the density
is varied continuously. Historically, in numerical models developed

by meteorologists and oceanographers, the three-dimensional model has
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been viewed as a superposition of layers of fluid separated by material
interfaces. The reason for this is partly physical, since during cer-
tain periods a body of water may become so stratified that strong den-
sity discontinuities can exist. On the other hand, if the vertical
resolution of the model is sufficiently large, any type of stratifi-
cation can be handled by a straightforward three-dimensional finite
difference grid, i.e., a sequence of rigid permeable horizontal levels.

100. Simons' (1973) model is a multilayered model, which employs
the principles and terminology of layered models while retaining the
capability of treating the layers as being separated by permeable
rigid interfaces (either horizontal or sloping) as well as treating the
interfaces in the usual layered manner as moving material surfaces. The
equations for the layered system are obtained by vertical integration of
the governing equations (written in the conservative form) over each
layer as opposed to applying the equations at given levels and replacing
the vertical derivatives by finite differences. The primary dependent
variables are the layer thickness or wvertical velocity and the layer-
averaged horizontal velocity components as well as the temperature.

101. Simons invokes the Boussinesq approximation and assumes that
vertical accelerations are negligible; i.e., the pressure is hydrosta-
tiec. With the assumption of the Boussinesq approximation, the equation
of mass continuity reduces to the incompressibility condition, which
implies that the vertical fluid motiom is directly related to the diver-
gence of the horizontal flow. With the hydrostatic pressure assumption
replacing the vertical momentum equation, the vertical component of
velocity cannot be computed in the same manner as the two horizontal
components. Instead, the equation expressing incompressibility is
integrated over a layer to yield an equation whose primary purpose is
to compute water displacements from a given distribution of horizontal
velocities. From this equation, one can determine either the displace-
ment of a material surface or the vertical wvelocity of the fluid through
a rigid interface, if given the appropriate boundary conditions at the
free surface, at the interface, and at the bottom. The computation

starts with the bottom layer and proceeds upward.
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102. The equation of state is such that the density is assumed
to be a quadratic function of the temperature. An eddy coefficient
model 1s employed to approximate the exchange of energy between the
large-scale flow and the smaller turbulent eddies. It appears that
constant, but different, horizontal and vertical coefficients are
employed. Simons does indicate that the vertical eddy diffusiﬁity
depends on the static stability 3p/%z of the water column, and he
allows it to attain very large values Ffor unstable situations in order
to simulate the net effects of convective overturning.

103. The time integration scheme employed by Simons uses centered
differences, where the pressure gradient terms, the divergence terms,
the Coriolis terms, and the nonlinear terms are evaluated at a time step
centered between the old and new time, while the dissipative and diffu-
sion terms are evaluated at the old time step. Centered differences arve
also used to replace spatial derivatives, and thus, the finite differ-
ence model is almost O(Ate, Axg) . Linear interpolation is used to
provide values of variables at points where they are not defined.

104, An interesting aspect of Simons' model is his use of two
different time steps. The surface and internal computations are de-
coupled such that a small time step governed by the Courant condition
is used to compute the water surface elevations; Whefeas, a much larger
time step governed by the speed of a fluid particle is used to conmpute
the internal flow and the temperature. This is accomplished as follows.
The layer-averaged equations are added to create a vertically averaged,
i.e., one-layer, model for gross fluid fiows, which are then used to
drive the free surface. The layer-averaged equations then use the re-
sults of the vertically averaged model to produce the internal flow
field. BSimons indiecated that in Lake Ontario, with a grid mesh of 5 km,
the surface elevation and the vertically integrated flow were computed
with a time step of the order of one minute, while the internal flow and

temperature were predicted with a time step of the order of 30 min.

Leendertse's 3-D Bstuary Model

105. This variable density model (Leendertse 1973) has been
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developed for the computation of the hydrodynamics of estuaries and
coastal seas. Some of the assumptions and formulations are not directly
applicable to freshwater reservoirs where density effects are due to
temperature variations rather than salinity; however, it is believed
that such an extension would not be difficult.

106. The approach taken in the formulation of the equations is
gimilar to Simons (1973) in that the basic fhree—dimensional equations
are integrated over a vertical layer to yield layer-averaged equations.
Unlike Simoms, however, Leendertse's model does not allow movable mate—
rial interfaces. The water body is represented by rigid permeable hori-
zontal surfaces with the thickness of each interior layer constant in
space and time, although the thickness of each layer is not necessarily
the same. The top layer that contains the surface is, of course; rep-
resented by a time-varying and spatially varying thickness.

107. The basic three-dimensional equations are written in the
conservative form to insure that mass, momentum, etc., are neither
created nor destroyed by the computational scheme. Before the layer
integration is performed, the Boussinesg approximation is assumed and
the pressure is assumed to be hydrostatic. Therefore, as in Simons'
model, the vertical component of the fluld velocity must be computed
from the layer-averaged condition of incompressibility.

108, Approximate eddy viscosity models that consider only the
diagonal components of the viscosity tensor are employed to represent
the subgrid-scale motions. The momentum and mass dispersion coeffi-
cients are assumed to be constant in the horizontal dimensions of the
flow, although they can differ in the two directions. The vertical
exchange coefficients are calculated with a more sophisticated model
that takes into account the vertical velocity, the concentratidn gra-
dient, and the stability of the flow according to the Richardson number.

109. Since the model was developed for an estuarine or coastal
environment, the equation of state relates the fluid density to the
salinity. If the model were to be applied to a freshwater environment,
a new equation of state relating the density to temperature would, of

course, need to be substituted. In addition, surface heat exchange
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would have to be accounted for through the surface boundary condition.

110. At the boundaries of the water body to be computed, all
diffusion coefficients are set to zero, as are the veloeities perpen-
dicular to the boundary. In this manner, no mass fluxes or diffusive
transports of selt result. At the surface, the boundary stress due to
the wind is computed from a quadratic law. A similar quadratic expres—
sion employing the Chezy coefficient is used to represent the dissipa-
tion of momentum at the bottom through the bottom shear stress. When
employing the layer-averaged approach, interfacisl shear stress terms
show up in the resulting equations for the layer-averaged variables.
As for the boundary stress specifications, a quadratie relationship
between the interlayer stresses and the velocity differences of adjacent
layers is assumed applicable.

11ll. The spatial grid used in the finite difference formiulation
is similar to that employed by Leendertse (1967) in his two-dimensional .
work where velocities are defined on the faces of a cell. However, the
water surface elevations, which are determined from an equation obtained
by summing the layer-averaged incompressibility equation over the water
column, are defined at the corners of the top layer of cells rather than
at the cell center as in the 2-D model. Pressure, density, and salinity
are defined at cell centers.

- 112. Centered differences are used for both time and spatial
integrations. Therefore, the resulting finite difference scheme is
O(Atg, Ax2) except that the diffusion terms are taken at the lower
time level, i.e., t = (n-1)At , since otherwise the computation becomes
unstable. Since centered differences are used to replace the time de-
rivatives, initial information at two time levels is required. To re~
duce the time-splitting tendency of such a scheme, a single forward
differencing step is used to obtain initial information on the second
time step.

113. Since an explicit time integration scheme has been utilized,
the basic stability criterion is once again the Courant condition.
Although the computations with the adopted scheme are extensive,

Leendertse indicates that the model is well within the range of

61



practical applications for relatively short-term simulations. For
exanple, Leendertse indicates that a problem with a horizontal grid of
about 1000 points and with eight layers required a computation time of
30 min on an IBM 390-61l for a real time simulation of 67 hr in 4000 time
steps.

Lick's Thermal Plume Model

114, A variable density, heat-conducting model for studying the
negr field surrounding the point of discharge of a river or power plant
into a body of water has been developed by Lick (1976) at Case Western
Reserve University.

115. Basic assumptions made in the model development are that the
Boussinesq approximation holds and that the pressure is hydrostatic. As
previously discussed, the hydrostatic pressure assumption reduces the
order of the system of equations and the computational effort required.
A major difference between the Lick model and other three-dimensional
models studied is the assumption of a rigid 1id at the surface. This
approximation, which removes the surface gradient terms from the momen-—
tum equations, is made to eliminate surface gravity waves and the small
time scales associated with them. This, of course, greatly increases
the maximum allowable time step without encountering stability problems.
With the rigid-lid approximation, the limiting time step is no longer
given by the extremely restrictive gravity wave Courant condition but

instead is usually fixed by the speed of a water particle, i.e.,
At < Ax/u

or perhaps by the szpeed of an_}nternal wave, l.e.,
Ax
/Ap
— gh
o g

where Ap 1s equal to change in water density.

At <
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116. With the rigid-1id assumption, the pressure is no longer
atmospheric at the surface but Iinstead varies with the internal flow
field. Thus, an additional equation must be derived and subsequently
solved to yield the surface pressure. Once the surface pressure is
determined, internal pressures are determined from the hydrostatic
condition.

1i7. The Poisson equation for the surface pressure is derived by
taking the divergence of the vertically integrated momentum equations
and making use of the vertically integrated continuity and hydrostatic

pressure equations. The form of this equation becomes

5 (haPS) 3 (hBPS)
% 3% + 5}' oy = F(H,V,W,T)

where PS is the surface pressure. Lick indicates that even though a
rigid 1id has been assumed, one can compute surface displacements (ne-
glecting the transient motion due to gravity waves) by interpreting the
surface pressure as a pressure due to a height of water above or below
the location of the rigid 1lid. The numerical solution of the pressure
Poisson equation at each time step is accomplished by using the ADI
method.

118. The diagonal components of the eddy coefficient tensors are
used to sccount for the turbulent subgrid-scale motions. The horizontal
eddy coefficients are assumed constant, but the vertical eddy coeffi-
cients are a function of the temperature gradient and other parameters.
This dependence on temperature is given by

Av=oz—ﬁg—2
where Av is the vertical eddy diffusivity and o and B are con-
stants depending on the local conditions. The constant o is equal to
the vertical eddy diffusivity under neutral stability conditions. Typi-
cal values for o and £ are 50 cmg/sec and 200 cm3/°C—sec, respec-—
tively. Lick handles a static instability in the same manner as Simons;

i.e., extensive mixing is assumed.
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119. An interesting aspect of Lick's model is his use of a linear
transformation in the wvertical direction such that the x , ¥y , 2

Cartesian system is transformed toa x ,y , 0 system where O <

A
Q

< 1 , with the bottom corresponding to o =0 and the top to o

1
'_I

The o coordinate is defined by

where h{x, y) is the depth of the water body. With such a transforma-
tion, lrregular botitoms can be handled more accurately and efficlently.
For gxample, the usual finite difference representation of the sloplng
bottom of the GRH flume (applications to be discussed later) is as shown

below.
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However, the use of the transformation above yields the following
physical representation, with the actual numerical computations being

performed on a rectangular transformed grid:
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It should be noted, however, that since the transformation is not con-
formal, when transforming the governing equations, the transformed
second derivative diffusive terms contain cross—derivatives of the

spatial coordinates. Lick assumes that the diffusive terms conitaining
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derivatives of the depth are negligible with respect to those diffusive
terms containing only the depth and thus drops such terms.

120. BSolid boundaries are taken as no-slip, impermeable, sdia-
batle surfaces. A heat transfer condition proportional to the temper-
ature difference (surface temperature minus equilibrium temperature)
and a wind-dependent stress are imposed at the surface. Normal deriva-
tive pressure boundary conditions are derived from the appropriate
vertically integrated momentum equation. At open boundaries far from
the point of discharge of the river or Plume, the normal derivatives
of the velocities and the temperature are zero.

121. As opposed to the layer-averaged approach of Simons and
Leendertse, Lick performs a straightforward finite differencing of the
governing 3-D equations. A forward time-differencing integration scheme
is utilized along with centered differences for the spatial derivatives.
Thus, the finite difference scheme is of the first order in time and
second order in space, i.e., O0(At, AXE) « The computational grid is
such that the horizontal velocity components, u and v » are defined
at the cell corners with fhe vertical component defined at the middle
of the top and bottom face of the cell. The pressure and temperature
are defined at the cell center, except for the surface pressure, which

is computed at the center of the top face.

Waldrop-Tatom 3-D Plume Model

122. There are actually two versions of this extremely versatile
three-dimensional variable density model (Waldrop and Tatom 1976). One
employs the hydrostatic pressure assumption, and the other retains the
complete vertical momentum equation. Both utilize the Boussinesq ap-
proximation and both neglect Coriolis effects. It appears from Wgldrop
and Tatom (1976) that the hydrostatic pressure version solves the non—
conservative form-of the basic governing equations; whereas, Tatom and
Smith (1979a) indicate that the conservative form of the equations are
solved in the version that does not make the hydrostatic assumption.

Both versions solve the governing equations transformed into orthogonal
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curvilinear coordinates. This, of course, allows for more accurate
modeling of curved boundaries such as river bends.

123. In the nonhydrostatic version, the pressure is written as
the sum of the hydrostatic pressure and the dynamic pressure 1/2 pv2 5
and a Poisson equation for the dynamic pressure is derived for solution
over the complete 3-D field. The Richardson iterative technique is em-
ployed. Tt might be noted that in the Poisson pressure equation, terms
that involve the horizontal densify gradients have been neglected. How—
ever, it does appear that horizontal density gradients, as reflected
through the hydrostatic component of the pressure, are included in the
velocity computations from the momentum equation.

12h. With the retention of the complete vertical momentum equa-
tion, a fully convective model that can handle buoyancy effects, i.e.,
unstable density profiles, is realized. The vertical component of the
velocity 1s now determinéd from the vertical momentum equation as
opposed to its solution from the incompressibility condition in the
hydrostatic version.

125. The effects of turbulence are included through the use of —
eddy coefficients. The horizontal eddy viscosity coefficient ¢ is

H
derived from a mixing length equation for open channels in the form

ey = 0.16(z - zB)2 (¢ - =z)/(z - zB)IB\JHE + v° /2]

where

ZB at the bottom

r at the free surface

Z

A
which provides the largest values of €q in deep regicns with large
velocity gradients in the vertical; whereas, in shallow and/or low flow
regions g is small. The horizontalleddy diffusivity AH is related
to the eddy viscosity by

AH = 1.335H

126. In turbulent flows, density astratification inhibits the
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vertical exchange of both heat and momentum as well as the mass of any
constituent. The Waldrop-Tatom models allow the vertical eddy coeffi-
cients to be functions of the stratification through their dependence

on the Richardson number in the following manner:

)—1/2

€, = &y (1 + 10R,

- -3/2
Av = A (1 + 3.33Ri)

where

R, = -(g/p}(3p/32) (B Vu® + VE/BZ)_g

It might be noted that although the eddy coefficients are allowed to
vary spatially, spatial derivatives of the coefficients have been
neglected in the model.

127. At solid boundaries, reflection boundary conditions are
imposed to simulate slip boundaries. Therefore, with solid walls as-
sumed to lie between the last two grid points, fictitious values of
dependent variables on the opposite side of a wall are set to prevent
mass, momentum, Or energy transfer through the boundaries. Velocities
normal to the wall are set as the negative of the value immediately
inside in order to make the normal velocity zero at the wall, but the
tangential component is set equal to its walue inside since with slip
walls, the wall does not infiuence the tangential flow. Derivatives
of the temperature normal to solid walls are set equal to zero to insure
no transfer of heat, '

128. The velocity profile near the bottom is assumed to be logam
rithmic. Thus, the equation below is used to help set the horizontal
velocity components at all grid points adjacent to the bottom in the

solution of the momentum equations:

_ 1 z - Zp
u—‘\/To/p mln = + 8.5
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where

TO = ghear stress
(z - zB) = height above bottom
k = diameter of the average roughness

The actual values chosen are such that the finite difference representa-
tion of the velocity gradients du/dz and 23v/9z near the bottom match
the gradient specified by the ehuation above. As noted, this is the
procedure for determining bottom velocities for use in the momentum
equations. However, in the transport equation for temperature, the
velocities at points adjacent to the bottom are determined from an
actual fit of the logarithmic profile rather than by forecing the proper
gradient. In the computation of the free surface, a control volume is
formed between the top grid plane and the free surface. BSince the three
velocity components from previous computations at a particular time line
are known, the mass transported into and out of the control volume can
be computed. The free surface is then adjusted to insure conservation
of mass. In the current versions of the model, the time integration is
essentially a forward difference, but with an additional step that
Waldrop and Tatom {1976) indicate helps to stabilize the computations.

This is accomplished with the following scheme:

n -1
ntl _ n u au At
o= +[(at) +(Bt) :Ie

where (Bu/at)n_l is saved from computations at the previous time step.
Tt would appear that this is equivalent to replacing the time derivative
at t = {n - 1/2)At by a forward difference between (n + 1)At and
nAt . Thus, the scheme is still only first order in time. Centered
differences are used in the diffusive terms, while one-sided windward
(either forward or backward, depending upon the direction of f£low)
differences are used in the finite difference representation of the
advective terms. Thus, it would appear that the solution scheme is
o(at, Ax) .

129. As noted in a previous section, the computational grid is

such that all varisbles are defined at the same point, with uneven
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spacing of those points allowed for more flexible resolution. Waldrop
and Tatom indicate that a transformation of the x , ¥y , z coordinates
such that even increments in the transformed system produce uneven spac—
ing of the grid points in the physical system is employed. However,
details of the transformation are not discussed.

130. The Waldrop-Tatom model is capable of handling branching
systems through its modular concept in which the equations are solved
simultaneously in different branches or regions. The reglons are con-
nected such that when there is free flow between regions, each region
uses previously computed information from the adjacent region as a
boundary condition. Of course, the fact that an explicit time-
integration scheme has been employed greatly decreases the difficulty
in incorporating such a concept. The handling of connecting branches,
'i.e., connecting regions, in an implicit model would be much more Aif-
ficult to accomplish. The capability of handling connecting regions,
allowing for a wvariable grid, and the use of curvilinear coordinates

makes the Waldrop-Tatom model extremely versatile,

Spraggs and Street's 3-D Model

131. The nonhydrostatic version of the Waldrop~Tatom model and
the three-dimensional model developed by Spraggs and Street (1975) are
the only 3-D numerical models studied that are fully convective models.
In other words, the complete vertical momentum equation is retained so
that buoyancy effects are modeled directly. As indicated by Spraggs and
Street, the primary use of the model iz to simulate flows in which the
stratification induced by heated effluents sets up in a matter of hours.
No claim is made as to the usefulness of the present form of the model
for simulating flows over periods extending over the time required for
the formation of a natural thermocline. This is because of the exces-—
sive computing time required due to the extremely small time step im-
posed by the explicit nature of the solution.

132. As in the vast majority of hydrodynamic models, the

Boussinesq approximation is made, which reduces the conservation of
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mass equation to the incompressibility condition. In addition, an eddy
viscosity model is used to simulate the transfer of energy from the
developing flow to small-scale turbulent eddies, i.e., the subgrid-scale

motions. These appear to be the only assumptions made to the basic

equations. It should be noted, however, that one important restriction -

exists in the basic mathematical development of the model due to the
manter in which pressure gradients are handled in the horizontal momen-
tum equations.

133. A reduced pressure PR , Which iz a measure of the perturba-
tions in the system, e.g., caused by stratification and/or vertical ac-

celerations, is defined as

(P-p)
P = — B

R pr

where the hydrostatic pressure Ph is

P, =(L,-¢-zlog
. is the density of a reference state, LZ is a reference depth,
z{x,y) 1is the water surface elevation, and =z is the distance above
the reference bottom. With the hydrostatic pressure defined as above
in terms of a reference density that is not a function of (x,y), the

pressure gradient becomes

1l 3F _ aPR _ 9L
p_ 39X, 9xX. € 3x.
r i i i

which does not allow for the effect on the flow of horizontal gradients
in the density. It appears that this restriction could be removed by
defining the hydrostatic pressure in terms of the spatially varying
density rather than of a constant reference density. Both Edinger and
Buchak (1979) in the modeling of stratified reservoirs and Hamilton
(1975) in the modeling of salinity-stratified estuaries have indicated
that the horizontal density gradients are quite important in modeling

variable density flows.
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134, As is usually the case when the hydrostatic pressure assump-
tion is not made, a Poisson equation for the reduced pressure PR is
derived by taking the divergence of the vector momentum equation and
combining with the time derivative of the incompressibility condition.
Derivative boundary conditions on the pressure at solid walls are
derived from the momentum equations; whereas, the pressure itself is
brescribed at the free surface. The solution of the pressure from the
three-dimensional Poisson equation is obtained through the lterative _
method called point Successive-Over-Relaxation (SOR). Spraggs and
Street indicate that the pressure solution usually converges within
50 iterations. BSuch a solution of a 3-D Poisson equation at each time
step constitutes a major portion of the total computation time of the
model. Thus, one can see why the hydrostatic Pressure assumption has
been so popular in the past in the development of hydrodynamic models.

135. The mathematical model is rendered dimensionless through
the introduction of three length scales, Lx » Ly , and LZ » 8uch
that any physical problem is mapped to the interior of a unit cube,
Thus, in the numerical model, there sre six length pa.rameters—-—Lx s
Ly ’ LZ » Ax , Ay , Az . The first three are defined as above,
while the second three are determined by the number of computational
cells within the unit cube. If LxAx = LyAy = LZAz s the numerical
model is undistorted, and the computational cells in the physical
problem are cubes. Generally, the horizontal length scales will be
much larger than the vertical length scale giving rise to a distorted
model in which LxAx # LyAy # LZAz .

136. The free surface elevation { is computed from the kine-

matic boundary condition

3T _ 3T _ 3%
ot~ T VT Uy oy

where the vertical coordinate is positive downward. The solution of
the free surface is obtained through the following ADT scheme, which
is one iteration of the Peaceman-Rachford scheme with an acceleration

parameter of 1.0:
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From the above solution technigque, it can be seen that since velocities

at the n + 1 time level are required, they are computed before the
computations for the free surface are made.

137. The Spraggs and Street model is the only 3-D model investi-
gated that allows for tensor eddy coefficients, i.e., the off-diagcnal
terms are not neglected. The form of the eddy viscosity tensor selected
by Spraggs is a function of the rate of strain Smn s 1.4,

)1/2

e.. = QAx.Ax (8 8
1j 17 mn mn

where the Reynolds stress is

' u! = -e,. 8., (no summation over i)
i J i 1J

and the rate of strain tensor Sij is.

ou. au,
g, = S
ij X, 0x,
J i
As Spraggs and Street note, there is some gquestion as to the value of
the scaling parameter £ , since the range of problems that might be

simulated could extend from laboratory flume dimensions to several

hundred kilometres in the field. A value of § = 0.01 was used by
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Spraggs and Street in the initial testing of the model. The eddy dif-
fusivity is similarly defined such that

ui T!' = _apeij %ET
J
where ap is the turbulent Prandtl number. It should be noted that
Spraggs did not allow for the effect of stratification, through the
Richardson number, on the eddy coefficients in his initial work, but
did indicate that such a modification would be made later.

138. The computational grid employed is one such that the
velocity components are defined on the cell faces; whereas, the
thermodynamic variables are defined at the cell center. Thus, the
grid is in essence a grid similar to that employed by Leendertse (1967).

139. Boundary conditions at solid walls are treated as no-slip.
Thus, the normal veloecity at a wall is set to zero, and its wvalue at
one grid point outside the wall is set as the negative of its value
at the first interior point. Tangential velocities are not defined
at the wall. However, iu order to model the effect of = no-slip
wall, its value at one grid point outside the wsll is taken to be
the negative of its value at one grid point inside. Both inflow
and outfiow boundaries are sssumed to be forced. At the surface,
velocities are set using a wind stress condition. The temperature
field at all boundaries except the free surface is assumed to have
a zero gradient; whereas, surface temperatures, of course, are
determined from the surface heat exchange determined by prevailing
atmospheric conditions.

140. TIn the solution of the velocity and temperature fields,
Tforward differences are used to replace time derivatives. Roache's
second upwind differencing scheme is used to replace the advective
terms. Thus (see Figure 5),

(2on)? - e v
5 Ax

3x

where O and A depend on the sign of the convecting velocities.
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Centered differences are employed in the representation of the diffu-
sive terms. Therefore, the finite difference scheme is in essence
O(At,AxE) . Various schemes of higher order were investigated by
Spraggs and Street, e.g., the leapfrog, the Adams-Bashford, and Fromm's
{see Roache 1972) second order schemes. The leapfrog scheme was dis-
carded because of the time-splitting nature of the solution, while
Fromm's method was not used due to the large percentage of boundary
cells encountered in 3-D modeling where the method uses centered spatial
differencing. Such a gcheme was found to be unacceptable near bound-
aries with large forced outflows. A similar conclusion was arrived at
during computer experimentation with the 2-D Edinger and Buchak (1979)
model (page 94). Spraggs and Street indicate that the necessary coding
for the Adams-Bashford method remains in the basic numerical model for

future development and testing.

Eraslan's 3-D Discrete Element Model

11, Eraslan* is currently working on a fully three-dimensional
heat-conducting hydrodynamic model for the Oak Ridge National Labora-
tory. The code will be a fully convective model with the conplete
vertical momentum equation retained. The basic solution technique will
employ en explicit time-differencing scheme along with the previcusly
discussed concept of discrete elements.. Therefore, his formulation will
employ integral forms of the governing conservation equations applied to
variable-sized discrete elements that span user—specified flow regions.
At the present time, there is no published informestion on the develop-

ment of the model.

Blumberg and Mellor's 3-D Model

142, After the initial writing of this report, a three-

dimensional heat-conducting coastal model developed by Blumberg and

¥ Personal communication, May 1979, Arsev Eraslan, Chief Scientist,
Hennington, Durhem, and Richardson, Knoxville, Tenn.
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Mellor (1979) at Princeton University was brought to the attention of
the author. It appears that the model 1s in an early stage of applica-
tion, with only preliminary tests in the Gulf of Mexico having been
made.

143. The basic eguations solved are statements of the conserva-
tion of fluid mass, momentum, and energy along with the conservation of
salt equatien. The energy equation is written in terms of temperature,
and thus the equation of state relates the fluid density to both tem-
perature and salinity. The basic Boussinesqg and hydrostatic pressure
assumptions are made.

14k. The model employs two concepts previously discussed in con-
nectlion with the Simons and Lick models. Similar to the Simons model,
the external flow is computed separately from the internal flow. The
external mode, an essentially two~dimensional calculation, reguires a
short integrating time step; whereas, the three-dimensional, internal
mode can be executed with a long step. The result is a fully three-
dimensional code that includes a free surface. Similar to the Lick
model, the vertical coordinate is transformed into a o ccordinate
system with 20 levels in the vertical. The model developers state,
"With such a transformation, the environmentally important continental
shelf, shelf break, and slope can be well resolved." Furthermore, the
model allows for variable grid spacing in the ¢ coordinate for in-
creased resolution in the surface and bottom layers.

145. Rather than employing the same concept of eddy coefficients
as ubilized by all the other models investigated, a second moment model
of small-scale turbulence as developed by Mellor and Yamada (1977) is
employed. Diffusive~-type terms proportional %o second derivatives in
the basic equations are retained only in the vertical direction.‘ The
developers indicate that they believe relatively fine vertical resolu-
tion results in a reduced need for horizontal diffusion; i.e., horizon-
tal advection followed by vertical mixing effectively acts as a horizon-
tal diffusion in a real physical sense.

146. At the surface, the wind stress, net heat flux, and net

evaporation~precipitation freshwater flux are accounted for. Bottom
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boundary conditions on the velocity components are supplied by matching
the solution to the logarithmic law of the wall.

147, Time differencing is the conventional leapfrog technique.
However, the scheme is quasi-Iimpliecit, since the vertieal diffusive
ternms are evaluated at the forward time level. Thus, small vertical
spacing is permissible near the surface without the need to reduce the
time increment or restrict the magnitude of the mixing coefficients.
The spatial differencing is not discussed, but Blumberg and Mellor
{1979) state that the overall solution is accurate to the second order
in space and time.

148. As previously discussed, leapfrog time differencing intro-
duces a tendency for the solutions at even and odd time lines to split.
The time-splitting here is removed by the use of a weak filter where
the solution is smoothed at each time step by

o= P o4 g_(Fn+l - oF® 4 Fn—l)
s 2 S
where o = 1/10 and FS is a smoothed solution. This technique intro-
duces less damping than either the Euler backward or forward stepping

techniques (see Roache 1972).
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PART V: TWO-DIMENSIONAL VERTICAL FLOW HYDRODYNAMIC MODELS

1%9. Various two-dimensional numerical hydrodynamic models have
been studied and range from vertically averaged models to laterally
averaged models to pure two-dimensional vertical-longitudinal models in
which the width is constant. There are many two-dimensional vertically
averaged estuarine models in existence. BHowever, since such models are
not applicable to stratified reservoir flows in which the allowance for
a variable density and variations in the vertical direction are crucial,
they are not discussed here. The only interest in such models in connec-
tion with this study was in the numerical techniques employed. ALl of
the models studied, except for one that employs the finite element
method, utilize the finite difference method for solving the governing
2-D equations. Unlike all of the 3-D models, which were explicit wmodels,
some of the 2-D models employ an implicit or perhaps semi-impliecit time
integration scheme so that time steps much larger than that given by
the Courant condition are allowed. A few of the 2-D vertical models in-
vestigated were developed originally for application to reservoirs, and
thus surface heat exchange and the variability of density with tempera-
ture are treated. The Edinger and Buchak (1979}, Waldrop and Farmer
(1976), and Roberts and Street (1975) models are examples. Other 2-D
vertical models, such as those of Hamilton (1975) and Blumberg (1975)
were initially developed for salinity-stratified estuaries and addi-
tional modifications would be needed for application to reservoirs. Ad-
ditional density-varying models that consider flow in a vertical plane
have been investigated and include those of Thompson¥*, Poseidon, Inc.,*¥

Worton, King, and Orlob (1973), and Slotta et al. (1969).

Bamilton's 2-D Estuary Model

150, Hamilton's (1975) 2-D model was developed to represent the

#%¥ Personal communication, April 1979, J. F. Thompson, Mississippi
State University, Mississippi State, Mies,
#% Personal communication, May 1978, Personnel of Poseidon, Inc., Calif.
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vertical structure of current and salinity along an estuary of wvarying
width and depth but with a rectangular eross section, i.e., B # B(z) .
A feature of the model is the numerical approach to the basic equations,
which considers the depth-~dependent variables as continuous. This is
in contrast with layered models where the equations are integrated over
the separate layers and exchange of momentum and salt between layers
Parameterized in terms of the mean velocities and salinities of the
layers. Hamilton indicates that a continuum approach allows better
treatment of the surface and bottom boundary conditions.

151. The basic 3-D equations are reduced to a set of laterally
averaged 2-D equations as previously outlined. The only difference here
is that the width is not a function of the vertical coordinate and,
thus, derivatives of the width with respect to the vertical coordinate
z are zero. The resulting laterally averaged equations, with the
Bouissinesq approximation and the hydrostatic pressure assumption, are
written in nonconservative form. Salinity is related to the density
through a linear equation of state.

152. Boundary conditions at the head of freshwater flow consist
of a vertical velocity profile and zero salinity. At the ocean boundary,
the tidal elevation is prescribed as a function of time, and the salinity
is specified to be that of the ocean. It does not appear that Hamilton
delineates an inflow and an outflow boundary at the ocean end. To con-
serve salt, the vertical salinity gradient at the estuary surface and
the bed is set to zero. Surface wind stress is neglected, and the bot-~
tom stress is assumed to obey the quadratic frietion law such that the
bottom stress is related to the velocity at a distance above the bottom
representative of the frictional layer, e.g., 1 m.

153. As in all hydrostatic models, the vertical compcnent of
veloelty is obtained by solving the laterally averaged incompressibility
condition from the bottom upward. The equation for the free surface is
obtained by vertically integrating the incompressibility equation. One
restriction imposed on the free surface by the code logic is that the
surface elevation does not differ by more than the vertical grid spacing

(assumed to be constant) between successive horizontal grid points.
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154. The finite difference grid is such that sgalinity, the verti-
cal velocity, and the vertical eddy viscosity and diffusivity are de-
fined at the center of a cell; whereas, the horizontal velocity is de-

fined at the cell corners. This is illustrated below.
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155, The time integration is a combination forward and backward
time-differencing scheme such that the diffusive and frictional terms
in the conservation of salt and momentum equations, respectively, are
taken at the n + 1 time level, while all cther terms such as the
advective terms are taken at the n time level. Bpatial differences
are replaced by centered differences, except in the horizontal advective
term of the conservation of salt equation, i.e., uds/dx , in which
Hamilton appears to make use of Roache's (1972) first upwind differencing.
Thus, the finite difference scheme is in essence 0(At,Ax) . The basic
stability criterion is the Courant conditioﬁ. Therefore, even though
the scheme might be called a semi-implicit one because the second deriva-
tive terms are taken at the n + 1 +time level, which does remove
diffusive-type stablility criteria, the scheme probably offers nc real

stability advantages over a purely explicit scheme.
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Blumberg's 2-D Laterally Averaged Estuary Model

156. Like the Hamilton model, Blumberg's (1975) laterally averaged
model was developed for application to an estuary. Thus, the density
is related to the salinity through an equation of state and, of course,
no surface heat exchange is included, since temperature is not modeled.
Unlike the Hamilton model, however, this model does not assume a
rectangular cross section and thus B = B(x,z) .

157. Additional assumptions made to the basie equations, which
are written in conservative form, are that the pressure is hydrostatic,
the Boussinesq approximation is applicable, and that eddy coefficients
can be employed to represent the efféct of subgrid-scale motions. Verti—
cal velocities are thus computed from the incompressibility condition,
and the free surface equation results from a vertical integration of
the equation for incompressibility.

158. Boundary conditions imposed consist of the inflow of fresh
water with zero salinity at the head of the estuary; whereas, salinity
and tidal elevations are specified at the ocean end. Unlike Hamilton,
Blumberg allows for the ocean boundary to be alternately an inflow and
then an outflow boundary. When inflow occurs, the salinity is set to
be that of the ocean; during outflow, it is determined from an extrapola—
tion of values inside. To prohibit the flux of salt. through the surface
and the bottom, the vertical salinity gradients are set to zero at those
locations. The boundary condition on the velocity at the surface is
determined from the wind stress. Similarly, the bottom stress determines
the boundary condition at the bottom. Extrapolation from the hydraulic
theory of flow in open channels allows the friction acting on a tidal
current, because of the estuary's bottom, to be expressed using the

quadratic law
T = kulu|

where u 1is evaluated 1 m away and k depends primarily on the

boundary roughness.
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159. The basic finite difference grid is of the MAC-type used by
‘Leendertse (1967). Pressure and salinity are defined at cell centers,
but velocities are defined on the faces of the cells. Water surface
elevations are defined on columns corresponding to cell centers. Sim—
ilar to the layered approach of Leendertse, the governing equations are
integrated vertically over each layer where the thickness of each layer
is constant except for the top one. The top layer, of course, contains
the influence of the surface gravity wave, and its thickness wvaries in
time and space.

160. Both a horizontal and a vertical eddy viscosity coefficient
as well as a horizontal and vertical diffusivity coefficient are com-

puted. The horizontal coefficients are computed from

= o= (22) 12

Wwhere
C = adjustable constant
while the vertical coefficients are related to the Richardson number in

the following manner:

1/2
- k252 z\ |auw -
Ay = Iy (1 h) 3z R
c
and A

e = —Y
v 1 + R.
1

where Av is the eddy diffusivity and € is the eddy viscosity, kl
is a constant whose value is ~0.10 and Ry is a critical Richardson
number taken to be 10. It should be rememﬁered that Blumberg's model
was developed for an estuary. Therefore, the functional form of the
coefficients above are probably not applicable to deep reservoirs. As
was done in the 3-D quasi-static models, the eddy diffusivity is assumed
large when unstable stratification develops. The salinity in the un-
stable layers is replaced by the averaged value of the adjacent layers.

161. The time~integration scheme is a centered difference or
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leapfrog scheme, except for the diffusive and frictional terms, which
are taken at the old time step. All spatial derivatives are replaced by
centered differences. Thus, as with the Simons 3-D model, the finite

E,Axe) . As previously noted, the use

difference scheme is almost 0(At
of centered differences in time and space results in a second order dif—
ference equation as the approximation to a first order differential
equation, and the solutions at odd and even time lines tend to split.
Blumberg attempts to remove this time-splitting through averaging re-
sults from three successive time steps with welghts of 0.25%, 0.50, and
0.25, respectively, every 25 time steps.

162. The centered difference time-integration scheme has the
property of not introducing artificial horizontal diffusion and vis-
cosity. Thus, to control nonlinear instabilities, damping must be input
into the scheme. This is the major reason for incorporating the ex-
pressions previously given for the horizontal diffusivity and viscosity,

AH and €, respectively.

Poseidon's 2-D Vorticity-Stream Function Model

163. There are no publishéd reports on Poseidon's® 2-D, longi-
tudinally and vertically dimensional, variable density model. The major
reasons for noting the model's existence are first because it is the
only hydrodynamic model discovered that is based on the vorticity-stream
function representation of the governing equations and secondly, because

of the manner in which the advection terms,

dluz) . alve)
et a;

where t is vorticity, are numerically modeled. As noted before, the
basic problem with these terms is that of achieving numerical stability
without numerical diffusion. The Poseidon code uses s flux-corrected

transport algorithm called SHASTA (Sharp and Smooth Transport Algorithm).

* Personal ecommunication, May 1978, Personnel of Poseidon, Inec., Calif.
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Fluxes are first advected according to a scheme that is stable but dif-
fusive, e.g., the two-step Lax-Wendroff algorithm. Then +the amount of
numerical diffusion is computed at each grid point, and the appropriate
amount of antidiffusion flux is applied to each cell, provided no new
extrema are created. A discussion of SHASTA is given by Boris and
Book {1973). Again it should be noted that such a model would not be

applicable to a reservoir contalning multiple outlets.

Slotta et al.'s 2-D NUMAC Model

164. A group directed by Slotta (Slotta et al. 1969) at Oregon
State University has developed the computer model NUMAC (Epnhomogeneous
Unconfined Marker and Cell) for analyzing transient, incompressible,
variable density, viscous flows with a free surface. As the name jim-
plies, the model is based upoﬁ the MAC method developed by Welch et al.
(1966}, which uses a mixed Eunlerian-lagrangian scheme. 1In this scheme,
the velocity and pressure are considered as Eulerian variables defined
at the mesh points of a fixed grid, but the density 1s considered a

Lagrangian variable localized to fluid particles. It appears that the

major differences between NUMAC and MAC lie in NUMAC's ability to better

handle inlets and outlets and in the use of the SOR technigue for
solving the Poisson equaticn for the pressure.

165. The basic Navier-Stokes equations for laminar flow written
in the vertical and longitudinal directions, in the conservative form,
are solved along with the conservation of mass equation. The Boussinesq
approximation is not made, and thus, the density is actually solved for
from a transport equation with p as the dependent variable. However,
the incompressibility condition is still invoked in the derivation of
the Polisson equation for the pressure.

166. Many different types of boundary conditions are allowed.

At material boundaries, the normal component of the velocity vanishes.
At a free surface, the boundary conditions are that the normal and
tangential components of the stress must vanish. Two inlet velocity

boundary conditions are allowed. One holds the inlet velocity constant,
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while the other requires the normal derivative to vanish. The normal

derivative of the density at an outlet is set to zero. Both slip and

no-slip solid boundaries are allowed with the derivative boundary con-
dition on the pressure determined from the momentum equation.

167. The finite difference scheme is basiecally one in which the
time derivatives are replaced by forward differences and the spatial
derivatives by centered differences. However, it does appear that
Roache's (1972) second windward-type differencing is used in the eval—
uation of momentum flux terms such as 3(puv)/dy , ete. Thus, theoret-
ically, the scheme is close to 0{At, AxE) .

168. As noted previously, the MAC calculations are a combination
of Eulerian and Lagrangian steps. The NUMAC computation cycle is sum—
marized in the following steps:

a. Compute new densities from the mass transport equation.

b. Using new densities, solve Poisson equation for the
pressure.

c¢. Using new densities and pressures, calculate new veloc-—
ities from momentum equations.

d. Move the Lagrangian particles by use of the new
veloeities,

e. Calculate new densities and viscosities at the mesh
points by averaging the densities and viscosities of
the particles that now surrcund each mesh point.

f. Compare this density with the value computed in step a.
If different, go to step b with these densities. If
they are essentially the same, continue.

&. Recompute the pressure from the Poisson equation.
h. Recompute the velocities from the momentum equations.
i. Move the particles using velocities from step h.

J. Increment the time and go to step a.

169. BSeveral stability criteria for this explicit scheme are pre-
sented; however, once agzain the basic criterion is related to the speed
of a gravity wave.

170. Obviously, NUMAC, or any of the related MAC codes, is an
extremely powerful numerical model for analyzing variable density fluid

flows, since the model is fully convective. However, computing times
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required for long-term transient problems are excessive due to the
explicit time differencing plus solving a Poisson equation for the
pressure. Slotte indicates that one time cycle on a (gpntrol Data
Corporation) CDC 6600 computer requires 7 sec for a problem with
800 cells and 3000 particles.

Norton, King, and Orloh's 2-D Vertical
Flow FEM Model--RMA-T

171. TUnder a contract with the Walla Walla District of the U. S.
Army Corps of Engineers, Water Resources Engineers, with Norton and King
as principal investigators, developed two 2-D hydrodynamic models using
the finite element method for obtaining numerical solutions of the gov-
erning flow equations (Norton, King, and Orlob 1973). One of the models
is a variable density, laterally averaged model that describes the be-
havior of velocity, temperature, and pressure in the vertical plane.

172. The basic equations solved are the 2-D laterally averaged
horizontal and vertical momentum equations slong with the continuity
equation reduced to the incompressibility condition as a result of the
Boussinesq approximation and an energy eguation written in terms of
temperatures. These four equations along with an equation of state
relating the fluid density to the temperature are solved for the five
unknowng--u , v, T , P, and p .

173. The exchange of energy to the unresolvable turbulent eddies
is accomplished through the use of eddy coefficients, which are treated
as constants within each element but can vary from element to element.
It should be noted that unlike most mcodels, the off-diagonal terms of
the eddy viscosity tensor are retained.

174, The equations are written in the nonconservative form with-
out the usual hydrostatic approximation. Thus, the complete vertical
momentum equation is retained and the model is a fully convective model.

175. The governing equations are solved by the finite element
method using Galerkin's method of weighted residuals. A mixed set of
basic functions is employed in the overall permutation. Quadratic

functions are used for all state variables except pressure where a
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linear function is used. The linear pressure function implies a con-
stant element density, which is calculated as a Ffunction of average
nodal temperatures. An implicit, Newton-Raphson computation scheme is
employed to achieve a solution to the set of nonlinear equations that
define the model. The resulting compuber Program accommodates tri-
angular and/or quadrilateral isoparametric elements.

176. Both a bottom stress term and a wind shear term are incor-
porated in the bottom and top row of elements, respectively. The use
of the isoparametriec formulation with interelement geometric slope con-
tinuity allows the user to specify slip or parallel boundary flows. In
addition, no-slip walls can be easily handled since zero values of u
and v would be inserted at the proper nodes of boundary elements. The
surface heat flux at the air-water interface is computed through the use
of the cbefficient of surface heat exchange and local equilibrium tem—
perature as calculated from meteorological data.

177. A recent version of the model accounts for the movement of
the free surface, although in a very limited fashion, since the movement
must be stipulated by the user. The free surface pressure boundary con-
dition is based upon the assumption of a locally flat surface =so that
the pressure boundary condition is for atmospheric pressure., The model
developers are currently incorporating into the model a procedure for
internally computing the location of the free surface utilizing the
atmospheric pressure boundary condition.

178. As noted in previous discussions, Tinite element models for
transient problems require large computing times. Therefore, such
models may not be applicable to the simulation of the natural stratifi-
cation cycle of a reservoir for economic reasons.

179. It might be noted that although laterally averaged models
provide a better representation of real reservoirs than pure 2-D models,
the momentum flux through an outlet at the dam is not accurately modeled.
In the horizontal momentum equation, the horizontal advection of momen—
tum is represented by poa(ﬁeB)/Bx , where u is the laterally averaged
velocity in the x direction. In actuality, the momentum fiux passing

a cross section is not poﬁeB » but instead is given by the integral
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0
Using a procedure borrowed from open channel hydraulics, one can set
B
oy f W ay = Bo B
0
where B8 is referred to as a "momentum correction factor." For the
plan and side view of a reservoir near the dam, the u-velocity profile

would be
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The discharge § is assumed known and is equal to EBOH = EBH , Where
H 1is the height of opening at the dam. Thus, u = Q/BH and

u = Q/BOH . Therefore,
B
[ G ==&
BOH BH
0

and, if one writes the integral as a sum of integrals over BO and

(B—BO) , then

2 2
2_\p = 3(9—) B
BH/J o BH
o}
since the integral over B 1s zero except on BO . The above can then

be solved for B %o yield

Thus, since B > Bo , B is much larger than 1.0 near the dam and de-

cresses in some manner with the x coordinate upstream of the dam until
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& value of 1.0 is reached. However, the usual procedure is to assume a
value of 1.0 everywhere, in which case the flux of momentum at the down-

stream boundary is not properly modeled.

Thompson's 2-D Model-~WESSEL

180. This is a laterally averaged 2-D model that is currently
being developed to assist the Corps in selective withdrawal studies.
Because of the concern for the quality of water downstream of reser—
voirs, there is a growing effort to control the quality of water re-
leased from reservoirs. The concept of controlling the quality released
from a density-stratified impoundment is called "selective withdrawal."
Because the quality of water and its density can vary from the surface
to the bottom of a lake, it is often possible to selectively withdraw
the most desirable qualities. A basic problem is to determine before
construction whether the design of an outlet will provide the desired
selective withdrawal characteristiecs.

181. An empirical method developed by Bohan and Grace (1969) can
be utilized for selective withdrawal predictions for simplified outlet
and approach geometries. However, for complex geometries, physical
and/or mathematical models are required.

182, Thompson's model utilizes the concept of boundary-fitted
coordinates to obtain a solution of the governing flow equations on a
nonorthogonal curvilinear coordinate system. The coordinate system is

generated from the elliptic generating system

Ex ¥t Eyy =P

-+ =
N nWQ
where P and Q are functions chosen to cause the £ » n coordinate
lines to concentrate as desired. With one coordinate being specified
as constant on the boundaries and a distribution of the other specified,

a coordinate system that follows all boundaries, no matter how
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irregular, results. A rather detailed discussion of the method and its
possible application to hydrodynamic problems is presénted by Johnson
and Thompson (1978). In addition, an extensive list of references de-—
scribing Thompson's work with the technique is presented in the work
cited. '

183. The next step is the development of a numerical model to
solve the governingkfluid flow equations on the coordinate system com-
puted above. Such a model will be able to accurately model the in-
fluence of boundary geometry on the developing flow.

184, The basic laterally averaged 2-D equations solved in
Thompson's model are the Navier-Stokes equations, mass conservation,
energy conservation, and an equation of state relating temperature and
density. These equations are transformed to the & , n system in a
fully geometrically conservative form such that the finite difference
representation is equivalent té the discrete element method. Essen-
tially no assumptions other than assuming an incompressible fluid are
applied to the basic equations; e.g., the Boussinesg approximation is
not made and the model is fully convective with the vertical velocity
obtained from the full vertical momentum equation. In the vieinity of
outlets, vertical accelerations may become large and a solution of the
full vertical momentum equation is probably required.

185. The pressure is computed using Chorin's method. This method
is based upon the concept that if a fluid is incompressible, the func-
tion of the pressure is to insure that the veloecity field satisfies the
incompressibility condition, i.e., V - ¥ =0 . An iterative algorithm
for the pressure field is thus set up such that

s+1 8
(Pn)ij = (Pn)ij - (v - ) ij

where the pressure field at time step n is determined such that the
velocity field at time step n + 1 will satisfy incompressibility. The
advantage of Chorin's method over the use of a Poisson equation is that

only velocities are required on the boundaries, rather than pressure

and/or velocity derivatives.
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186. The finite difference grid is such that both velocity com-
ponents are defined at cell corners, while the pressure, temperature, and
densitly are defined at the center of a cell. It should be noted that
the transformation of the equations into the boundary-fitted coordinate
system is such that all computations are performed on a rectangulay
(£ , n) grid with square grid mesh.

187. The model being developed will be extremely general so that
any number of inlets and/or outlets can lie on any boundary. In addi-
tion, any number of bodies can lie in the interior of the field, with a
constant coordinate line following each body. Boundary conditions can
be either slip or no-slip on solid boundaries, with the option of either
specifying wall temperatures or the heat transfer rate at such
boundaries.

188. The basic finite difference scheme utilizes second order
backward differences to replace time derivatives and centered differ—
ences to replace spatial derivatives. The model will allow the option,
however, of selecting windward differencing of advective terms. The
finite difference scheme is thus fully implicit and of O(Ate, AEQ) or
almost O(Afe, Agg) , depending upon whether Roache's (1972) first or
second differencing is employed. The SOR iterative method with a vari-
able optimum acceleration parameter field is utilized to obtain a
solution.

189. With such an unsteady, fully convective, variable density,
free surface model thet models the flow phenomena in a natural coordi-
nate system that fits the boundaries of the field, a wide range of hy-
draulic phenomena can be accurately simulated. However, due to the
fully implieit nature of the solution and the resulting iterstive sclu-
tion technique, the computing time required for long-term simulations
will probably be large. For selective withdrawal studies in which only
the steady-state solution is sought, the computing cost should not be

a major factor.

Roberts and Street's 2-D Reservoir Model

190. Roberts and Street's (1975) variable density model is quite
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similar to Spraggs and Street's (1975) 3-D model with the major excep-
tions being the dropping of the lateral dimension and the assumption of
a hydrostatic pressure dis%ribution, eliminating the need for a separate
pressure eqﬁation and the attendant costly solution procedure. The
basic finite difference grid, solution technique, and eddy viscosity
model are all essentially the same as employed in the 3-D model, but

are now reduced to two dimensions. The model is thus a pure 2-D
vertical-longitudinal model in which a varying width is not allowed.

191. With the hydrostatic pressure assumption, the vertical
veloecity is solved from the condition of incompressibility, and a large
vertical diffusivity is invoked fo simulaﬁe convective overturning,
which cannot be dealt with explicitly. TUnlike some of the hydrostatic
models that integrate the incompressibility equatilon over the vertical
to yield an equation for the free surface, Roberts and Street determine
the free surface directly from the kinematic boundary conditlon at the
surface. As in the 3-D Spraggs and Street model, an implieit solution
. of the surface equation is obtained. Once again, however, because of
the lack of coupling between the velocity field and the free surface at
time level n + 1 , the Courant condition is still the controlling
stability criterion.

192, Limited-slip sclid boundaries are agsumed. The velocity
orthogonal to the boundary is set to zero, but the tangential velocity
is defined by the Chezy-Manning formula for boundary shear stress such
that the proper velccity profile near the boundary can be achieved.
Forced flow boundaries, of course, require the specification of the
veloeity. At solid boundaries, temperature gradients are set to zero
to model an adiabatic wall.

193. At the free surface, the velocity boundary condition is
determined by the wind stress, and tem;eratures are determined by a
surface heat-exchange equation.

194, The basic finite difference scheme for the internal flow
utilizes forward differencing in time and centered differencing in

space, except for the advective terms where Roache's (1972) second
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upwind differencing is utilized. The overall solution is, thus, almost
of 0O(At, Axe)

Waldrop and Farmer's TVA 2-D Reservoir Model

195. Waldrop and Farmer's (1976) model is an explicit laterally
averaged hydrodynamic model for analyzing flows in stratified reservoirs
or long river reaches. The model is designed to accommodate hourly
changes in boundary conditions consisting of dam discharges, tributary
inflow conditions, steam plant intake and discharge conditions, river
inflow rates and temperatures, meteoroclogy and wind shear.

196. Very little detailed published material on the model exists,
although Waldrop and Walter Harper of TVA are currently in the process

of writing such a report. It should be noted that Harper has been respon-

sible for most of the coding and testing of the model; thus, the model
should probably be called the Waldrop-Harper model. From the limited
material available, it appears that the nonconservative form of the
laterally averaged fluid flow equations and the temperature transport
equation, in which the Boussinesq approximation and the hydrostatic
Dressure assumption have been made, are solved. The effect of turbu-
lence is included through eddy coefficients, which are modeled by using
a mixing length theory as in Waldrop and Tatom's 3-D model. The retard-
ing effect of stratification upon vertical mixing is included by damping
the vertical eddy coefficients as a function of the loeal Richardson
nhumber.

197. Free surface boundary conditions on the temperature and
velocity are provided by the specification of the surface heat flux and
the wind shear, respectively. The surface heat flux 9 is prescribed

as a quadratic function of the temperature, given as
a = a{t)sT° + b(t)sT_ + C(t)
5 5 8

where a , b, and c are coefficients dependent upon meteorological

conditions, and 'I'S is the surface temperature; wind shear is given by
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where C 1s & coefficient, UWIND is the wind velocity, and US is the
surface water velocity.
198. The basic finite difference grid appears to be a 2-D version
of the 3-D model, and thus, solid boundaries are treated as in that
medel. In other words, slip boundary conditions are assumed at vertical
walls; whereas, a limited-slip condition is applied at the bottom by
using a logarithmic profile to set the velocity near the bottom. With
such a technique, the bottom never actually lies on a grid point. {
199, With the same basic finite difference scheme as employed in
the 3-D model; i.e., a form of forward differencing in time and centered
differencing in space, except for Roache's (1972) first windward differ-

encing of advective terms, the basic scheme is probably of 0(At, Ax) .

Edinger and Buchak's Laterally Averaged
Reservolr Model--LARM

200. Edinger and Buchak's (1979) LARM (Laterally Averaged Reser-
voir Mpdel) is a numerically efficient 2-D laterally averaged free surface,
variable density, heat-condueting model developed for the Ohio River Divi-
sion, U. 8. Army Corps of Engineers, for use in simulating flows in
étratified reservoirs. As noted by Edinger and Buchak, "Such a model
is needed in long, narrow reservoirs that exhibit density flow, epilim~
netic wedges and titled isotherms and in deep power plant discharge
canals with bottom intrusion of cold water and backwater density wedges
from such discharges to rivers."

201. In the initial development of the model, it was anticipated
that its primary use would be for long-term simulations extending over
a natural stratification cycle of a reserveoir. Thus, it was deemed
necessary to develop a solution technique that would allow for time
steps significantly larger than those imposed by the free surface
gravity wave. To allow this, finite difference techniques have been

enployed to solve the governing equations such that the water surface

ok



elevations are computed implicitly, phe velocity components in the
lengitudinal and vertical directions are then computed explicitly, and
finally the temperature field is computed implicitly. The density is
then, of course, computed from an equation of state. Unlike the Roberts
and Street (1975) model, which also implicitly computes the water sur—
face, Edinger and Buchak's model couples the internal flow and the free
surface, and thus, the scheme has been found to be stable so long as the
volume of water entering a finite difference cell within a time step is
less than the volume of the cell.

202, Edinger and Buchak utilize the layer—averaged concept of
Leendertse and Simons. The governing equations that are solved are thus
laterally and layer-averaged 2-D equations with layer-averaged variables
as the dependent variables. The equations are written in the conserva-
tive form with the RBoussinesq and hydrostatic approximations. In addi-
tion, eddy coefficients are utilized to model the influence of
turbulence.

203. The horizontal coefficients of eddy viscosity and eddy dif-
fusivity are assumed to be constant; whereas, in a recent development,
the vertical eddy diffusivity and eddy viscosity-—related to the in-
ternal friction coeffiecient that results from the layer averaging and
replaces vertical viscous terms as related to second derivatives-—are
allowed to be dependent upon the Richardson number. The form of this

funetional dependence is

-3/2
Avb(l + 3.333i)

=
It

~-1/2

[}

€

e {1 + 10R.)
v v 1

o)

Unstable stratification is modeled by allowing €, to increase to the
diffusive stability limit of Az2/2At when R, <0 .

204. As in other hydrostatic models, the vertical component of

the velocity is obtained from the incompressibility equation, with the

solution beginning at the bottom and Progressing up the column of
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layers. An equation for the water surface elevation is then obtained
by summing the layer-averaged incompressibility equation over the water

column. This equation takes the form

3(cB) _ 3 (uBH)

L Z layers X

where ¢ is the deviation from the top of the top layer of fluid,
positive downward. Edinger and Buchak then replace the time derivative
by a backward difference to yield an implicit solution for ¢ . How-
ever, the velocities are unknown at the n + 1 level. This problem is
overcome in the following manner. The horizontal momentum equation

takes the form

3(uBH) _ oB 25

3t 3 o T

in which a forward time differencing is used in relation to all the

terms comprising F , while the 3z/9x term 1s taken implieitly, i.e.,

)1'.I.+l

at the n + 1 time step. The expression for (uBRH from the momen-—

tumn equation is then substituted into the finite difference form of the
free surface equation. The resulting difference equation then contains

+ + +
the unknowns o+l Cn 1 » Cn 1

Si41 0 N i1
which can be efficiently solved by the Thomas algorithm.

i.e., a tridiagonal system results,

205. With such a coupling of the internal flow and the free sur-
face computations, the Courant stability criterion is removed. The time
step is now limited by the internal flow speed, plus perhaps diffusive
eriteria, rather than the speed of the surface gravity wave. it is the
removal of the Courant condition that makes the Edinger and Buchak
(1979) model so attractive with regard to long-term simulations of
stratified reservoirs.

206. With the free surface elevations computed at the n + 1
time step, the horizontal velocity component is then computed explic-
itly, followed by an explicit computation of the vertical component.
The temperature is then computed from its transport equation, using

the new velocities. This, however, now requires an implicit solution
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for the temperature since if the velocity in the advective term is taken
at the (n+l) level, the temperature must be taken at that level also;
i.e., terms such as 9(uBHT)/5x are taken completely at the new time
level. To avoid having a 2-D implicit computation, which would require
either an iterative solution or perhaps the use of an ADI scheme, the
horizontal diffusive term is taken at the n + 1l time level, but the
vertical diffusive term is taken at the old or n +time level. The re—
sulting difference equation takes a tridiagonal form also and thus is
solved in the same manner as is the free surface equation.

207. ©Spatial derivatives are replaced by centered differences in
all terms, except the advective terms in the temperature equation where
Roache's (1972) first windward differencing is used. In addition, in
computer experimentation with the model, it was concluded that windwarad
differencing is also required in the momentum advective terms in cells
adjacent to forced outlets. This will be discussed later in connection
with application of the model to the CRH flume. Since the windward dif-
ferencing is Roache's first kind in which gimple forward or backward
@ifferencing is utilized, it appears the solution scheme is 0(At, Ax) .
As previously noted, such a scheme breserves the transportive property
but not the conservative property snd in addition is only of the first
order. If Roache's second upwind differencing had been employed, the
resulting scheme would be almost O(At, Ax2) » and both the transportive
and conservative properties would be preserved. It might be noted that
by solving the temperature equation implieitly, the time step limit of
W/Az that can be more severe than u/Ax has been removed.

208. Boundary stresses at the surface and the bottom are incor-

porated directly into the layer-averaged equations through the following

expressions:
_ C*® 2
Tymp = 5 Pg W cos 9
and,
Tb = ';%ulul
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where

Cy = resistance coefficient (2.6 x 107°)
P, = air density (1.2 kg/m3)
W, = wind speed at 10-m height (msec-l)
¢ = angle between wind and reservolr axis
C = Chezy coefficient (ml/e/sec)

209. With the use of the layer-averaged apprcocach, the boundary
stresses are incorporated directly as terms in the eguations, and bound-
ary conditions on the tangential wvelocity at the bottom cannct be pre-
scribed. In addition, with the MAC-type grid employed and with the
vertical velocity determined from the incompressibility condition, no
specification of the tangential velocity at a vertical wall 1s allowed.
Of course, at all solid boundaries, the normal component of velocity is
set to zero. In addition, all eddy coefficients are set to zero at
solid boundaries to prevent heat transfer at such boundaries.

210. The net rate of surface heat exchange is expressed by:
h = -CSHE (T_ - ET)
n s

where CSHE and ET are dependent upon shortwave solar radiation, air

temperature, dew point temperature and wind speed.
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PART VI: APPLICATION OF SELECTED MODELS TO THE GRH FLUME

211. Two of the 3-D models and three of the 2-D models have been
applied to a bottom density current problem in the Generalized Reservoir
Hydrodynamics (GRH) flume at WES. 1In addition, before this report was
published Arsev Eraslan provided results from application of the auto-
matic 2-D version of his general 3-D model.® The 3-D models were that
of Spraggs and Street (1975) and the Waldrop-Tatom (1976) model; while
the 2-D models were LARM, the TVA model, and the RMA-T Tinite element
model. The two attempts at a 3-D simulation, as well as the TVA's 2-D
simulation, were made by the respective model developers at the request
of WES, with the Waldrop-Tatom simulation being made by Tatom at WES
on WES's Texas Instrument-Advanced Scientific Computer (TI-ASC) computer.
The simulations with LARM were conducted by Edinger and Buchak on the
CDC T600 computer located at Boeing in Seattle, Wash. In addition, WES
personnel have made similar computations on the CYBER 176 located at
Kirtland Air Force Base, N. Mex. The application of the finite element
model RMA-T was made by Bob MacArthur at the Hydrologic Engineering
Center (HEC) on CDC equipment located at Berkeley University and on a
Prince 550 minicomputer located in Lafayette, Calif.

212. The primary reason for application of the models to the
bottom density flow problem was to provide an assessment of relative
economy of the more promising models and their 2bility to simulate a
real problem that commonly occurs in reservoirs, whether it be as the
result of a coldwater inflow or the plunging of a sediment-laden stream.
With an application to a laboratory flume, test conditions could be
accurately controlled and temperature and velocity profiles readily ob-
tained, Although temperature data are available, as far as is known,.a
detailed set of reservoir field data including velocities and results
from dye tracer tests does not exist. It seems reasonable to believe

that if a mathematical model can accurately simulate laboratory

* Personal communication, March 1980, Arsev Eraslan, Chief Scientist,
Hennington, Durhem, and Richardson, Knoxville, Tenn.
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conditions, the expectation of reasonable field applications is Justified.
This is true because the only scaling effects in the mathematical models
ig in the specification of the eddy coefficients. Thus, although an
accurate simulation of a laboratory test may not Justify a quantitative
confidence in the ability of the model to yield similar sccuracy in the
field, it does demonstrate qualitatively the model's ability to simulate

bagic flow phenomena.

Description of GRH Flume and Test Conditions

213. A photograph of the GRH flume is provided in Figure 6. The
flume is 24.38 m long with a 0.91-m % 0.91-m cross section at the down-

stream end. The cross section at the upstream end is 0.30 m x 0.30 m

Figure 6. The CGeneralized Reservoir Hydrodynamics (GRH) flume
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and linearly grows in width over the first 6.10 m to a cross section
0.30 m deep and 0.91 m wide. The bottom of the flume is horizontal for
the first 6.10 m and then drops a total of 0.61 m linearly over the fi-
nal 18.29 m of the flume. Both plan and side views are given in Fig-
ure 7. The water in the flume was at rest and homogeneous at the initig~
tion of the test, with the temperature being 70.6°F. Cold water was
input at 0.46 m from the upstream end at a temperature of 62.0°F. A
baffle restricted the cold water to enter over sbout the bottom 0.15m
of the cross section. The inflow rate was 0.00063 m3/sec with the out-
flow rate at the downstream end being the same. The outflow was removed
from a port with a 2.54-cm diameter located 0.15 m above the bottom of
the flume and 0.46 m from either side. Thus, as previously discussed,
the 2-D laterally averaged models will not accurately model the momentum
flux from the system. In fact, neither will a 3-D model unless the lat-

eral and vertical dimensions of a cell are of the same size as the port.

0.30rn:[ 0.91m

6.10m } 18.29m i
! =

a. PLAN VIEW

D.SOmI |I
0.91m
b. SIDE VIEW
Figure 7. Schematic of GRH flume
Observed Flow Phenomena -

214, The coldéwater input was dyed for easy visual observation.

The basic flow phenomena that developed was the classical density
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underflow discussed by Harleman (1966). From a visual observation, the
depth of the darkest or most dense fluid appeared to be about 7.5 cm
with an overlying intermediate shade of about 5.0 cm and above this a
much lighter shade of perhaps another 7.0 to 10.0 cm. The use of dye
streaks to determine velocity profiles quickly revealed a reverse flow

pattern above the density underflow. An example is presented in

Figure 8.

Figure 8. CORH flume simulation of an underflow density current

215. TFrom a visual observation of the phenomena, it was concluded
that the relatively smooth flow was probably in the laminar flow range.
However, the Reynolds number based upon a density underflow height of
7.5 em, an average velocity of 0.022 m/sec based upon the time required
for the underflow to reach the downstream end, and a molecular viscosity
of water of 1.5 x 10“6 me/sec, has a value of 1140. Harleman (1966}
indicates a value of 1000 is the critical Reynolds number for turbulent

flow. Thus the flow is probably in the transition zone between laminar
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and turbulent flow, rather than being completely laminar.
216. Using Harleman's equation for the average velocity of a

laminar density underflow,

1/2
- 1/2 {ap
U= 0.375 K (p hDFS) |

where
hDF = height of density underflow, ft
5 = slope
Re = Reynolds number
Ap/p = 0.001121

a value of U = 0.012 m/sec 1is obtained. If the equation for the aver-

age velocity of a turbulent density underflow is used, i.e.,

h s
g 4o _DF

u= b f(1+ a)

where f , the nondimensional friction factor, is taken as 0.003, cor-
responding to a Chezy value of 55 m;/a/sec, and as suggested by Harleman

o = 0.43 ; a value of U = 0.04 m/sec is computed.

Application of Three-Dimensional Models

217. 'The flow in the flume is essentially a two-dimensional flow,
except, of course, in the vieinity of the outlet. However, as an aid
in the assessment of 3-D models, an attempt at applying both the Spraggs
and Street (1975) and the nonhydrostatic version of the Waldrop-Tatom
(1976) models to the coldwater inflow problem has been made. As dis—
cussed below, neither of these attempts was very successful.

Application of
Sprages and Street's THERMAC

218. Dr. Lynn Spraggs at MeGill University made an application of
THERMAC with the computing facilities available to him in Montreal,
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Canada.* After much investigation without success into the use of time
steps larger than that allowed by the Courant condition, Spraggs cou-
cluded that using the existing 3-D THERMAC model to simulate the flow
in the flume was not economically feasible. His work with the larger
time steps included different schemes for temperature acceleration,
rigid-1id approximations and differential time-stepping. His estimate
for simulating 30 min of real time in the flume is 25 to 40 hr of CPU
(central processing unit) time on a CDC 7600. Therefore, it is obvious
that numerical schemes that allow for much larger time steps must be
devised before an explicit 3-D model such as THERMAC can be economically
applied to relatively long-term reservoir gimylations.

219. Spraggs was able to simulate only 600 sec of the flume prob-

lem, The computed temperature field at 549 sec is presented in Figure 9.

V_| 12

. "
70.92 | 70.07 | 70.43 | 70.48 | 70.47 | 70.50 | 70.50 | 70.50 | 70.50 | 70.50 | 70.50 | 76.50 | 70.50

' ——= FLOW OUT
68.84 | 6955 | 69.78 | 70,08 | 70.10[ 70.39 | 70.49 } 705 | 705 | 705} 70.5 | 70.5 | 70.5

FLOW IN —— - g
54.14 |57.43163.20 |65.79 | 67.93 |69.16 [70.121 7046 | 70.5 | 70.5 | 70.5 } 705 | 705 | 70.5

64.32 |66.15 | 67.68 1 68.99 | 69.98 | 70.44 | 70.5 | 705 | 70.5 | 70.5 | 705 | 70.5

69.26 | 69.97 | 70.26 {7048 ]| 705 | 70.5 | 706 | 7051 70.6 | 70.6

705 | 705 | 705 | 705 | 705 | 705 | 70.5 | 70.5

AX =162 m
AY =046 m
AZ = 0.076 m

Qin = 0.00063 m%/s, Tin = 54,14 °F 3
Cout = 0.00063 m%/s

Figure 9. THERMAC Model results after 549 sec, cooled Jet

¥ Personal communication, November 1979, Lynn Spraggs, McGill Univer-
sity, Montreal, Canada.
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As can be seen, the simulation was conducted with outflow from the top
rather than the bottom. Spraggs indicates that the reason for the tem-
Peratures of the cells at level 11 being greater than 70.6°F is that
the simulation is unstable at the surface and continuity is not being
conserved. It should be noted that in THERMAC the unstable stratifica-
tion resulting from the stair-stepping effect at the bottom is handled
in a fully convective manner, since the complete vertical momentum
equation is retained and buoyancy effects are thus convectively modeled.
220. Spraggs also made an additional simulation with a heated
bottom inflow. Resulting temperatures are presented in Figure 10. The
simulation shows that the model seems to be performing correctly. How-
ever, a much longer simulation time is required before definitive con-

clusions can be drawn.

—1 v
== 12
1"
73.65 | 71.26 { 70.72 | 70.55] 70.61
~—1 g FLOW OUT
75.01 | 72.89 { 70.95 | 70.59 | 70.52 | 70.50
FLOW IN —— - 9
86.86 | 77.41 | 72.89 | 71.01 ] 70.61 { 70.50 | 7050
71.09 | 70.70 | 70.55 | 70.51 ] 70.50 8
70.51 | 70.50 | 70.50 7
6
5
Tin = 86.86° F
4

Figure 10. THERMAC Model results, heated jet
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Application of
Waldrop~Tatom 3-D PLUME

221. As previously noted, the application of the nonhydrostatic
version of the Waldrop-Tatom model to the density underflow problem in
the GRH flume was made by Tatom and Smith (1979a) on the TI ASC computer
located at WES.

222, The numerical schematization of the flume is illustrated in
Figure 11. As shown, the varying width al the upstfeam end is modeled
with three regions, each with a constant width. The axis of the flume
is considered to be a plane of symmetry so that only half of the flume
in the lateral direction is modeled. As can be seen from Figure 11, the
bottom never falls om a grid point, and solid walls are assumed to lie
halfway between the last two rows of points. Variable grid spacing in
all three dimensions is allowed in the model for extra flexibility.

Very little documentation of the code has been published.

223, Initially, it was realized that excessive computing time
would be reguired if the time step was restricted by the Courant condi-
tion. With a lateral spatial dimension of 7.62 cn and a maximum depth
of 0.91 m, the Courant criterion restricts the time step to be less than
approximately 0.025 sec. Therefore, the initial decision was made to
model the problem using & rigid-1id assumption to allow for larger itime
steps. Tatom incorporated this by forcing the water surface to remain
at its initial level and specifying a derivative boundary condition at
the surface on the dynamic pressure. The results did not resemble the
density underflow observed in the flume. Basically, the coidwater in-
flow tended to spread over the complete depth of the flume and ao flow
reversal was computed.

224, It was then decided that the rigid-1id assumption was not
appropriate, and the derivative pressure boundary condition was replaced
with a pressure boundary condition that corresponded to a free surface.
Actually the surface was allowed to be free only in the longitudinal
direction; i.e., no transverse variations were allowed. Applying the
Courant condition only to the longitudinal direction gives a stabllity

restriction such that the time step must be less than about 0.50 sec. A
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time step one-tenth of this, i.e., 0.05 sec, was then employed. With

the problem set up in this fashion, there still was no real improvement
in the computed flow field. In addition, the computing time was exces-
sive. Approximately 12 to 15 hr of CPU time on the TI ASC computer would
have been reguired to simulate 30 min of real time in the flume.

225, Various portions of the code were investigated in an abtempt
to resolve the inability of the model to properly simulate the density
underflow; e.g., molecular values of the eddy coefficients corresponding
to laminar flow were used instead of the turbulent open channel coeffi-
cient model, differencing of the convective terms near the bottom was
changed, and the pressure boundary condition at the surface was modified.
The first two changes above made little or no difference. When the pres-
sure boundary condition was changed such that the dynamic pressure at
the first row of grid points inside the fluid was set to zero, some
improvement was noted. A slight flow reversal was computed above the
density underflow. However, the temperature of the water near the bot-
tom was too high and the underflow moved much too slowly. R

226. At this point, Tatom decided again to invoke the complete
rigid~-1id assumption to allow for a much larger time step but to retain
the zero dynamic pressure condition at the surface. Results from this
run and a list of input parameters are presented in Appendix A. The
general conclusion is that the density underflow is still not properly
simulated. Ag can be seen from the computed results, very little flow
reversal is computed, and the computed flow moves much more slowly than
observed in the flume. Only about 18-19 min is required for the density
underflow to traverse the complete length of the flume, i.e., 23.93 m,
but the model indicates a travel distance of only approximately 9.14 m
in 33 min. Since funding provided for this application was limited, the
reason for the inability of the model to properly compute the density
underflow has not been determined. It should be noted that in a mathe-
matical sense a Dirichlet-type boundary condition, i.e., setting the
dynamic pressure equal to zerc at the surface, is not allowed when impos-
ing the rigid-lid approximation.

227. As described in Tatom and Smith (1979b) in an attempt to
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reduce the CPU time required by 3~D PLUME, Tatom and Smith recoded por-
tions of the model to better utilize the vector features of the ASC
computer. From the results presented in Appendix B, it can be seen that
this effort resulted in a 56-percent reduction in CPU time over the
original version of the model that utilized the automated vector fea-

tures of the machine.

Application of Two-Dimensional Models

Application of .
Edinger and Buchak's LARM

228. Because the Corps funded the initisl development of LARM, an

early version of the basic computer code was availasble for computer ex-
perimentation by WES personnel. During this experimentation, several
general changes were made to LARM. These centered around making the
model more general in the specification of inflows and outflows.

229. During the application of LARM to the GRH flume, as well as ——

in the computer experimentation, it was observed that a common occur— :
rence at the downstream boundary in front of an ocutlet was that of =
flow reversal. Various steps were taken to try to alleviate this prob-
lem, including an attempt to incorporate a momentum correction factor
and & momentum sink term under the assumption that perhaps the improper
modeling of the momentum flux through an outlet was causing the problem.
In addition, in an effort to create a larger pressure gradient near the
outlet to force the flow in the proper direction, the hydrostatic pres-
gure was decreased by 1/2 p u2 s i.e., the dynamic pressure. None of
these attempts proved successful.

230. Finally it was discovered that the use of centered differ—
ences in the convective terms of the x-momentum equation is unacceptable
near a forced outlet. This is related to the fact that centered differ-
ences do not possess the transportive property. This is illustrated by
the problem below in which the initial flow field is stationary and a

forced outflow with velocity UO is prescribed.
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Using centered spatial derivatives and a forward time derivative, the

x—veloeity at time t = At at (i-1/2,3) is

et _ =0 a2 2 0, =0
i-1/2,]3 i-1/2,] AX o i-1,]
With the flow field at t = C stationary,
2
0+1U
t=A% _ At o)
Uig/e,5 =9~ ax ( 2 ) - 0p+o0

or, the initial computaticn for the velociiy in front of the outlet
yvields a flow reversal, i.e.,

bt M g2

i-1/2,3 LAY "o
As noted by Spraggs and Street (1975), the use of windward differencing
near an outlet corrects the problem. Therefore, the original centered
difference representation of the horizontal advective term B(uQBH)/8x
has been replaced with a one-sided difference near an outlet.

231. In the initial application of LARM to the GRH flume by WES

personnel, it was observed that the coldwater inflow in essence moved

to the dam in the horizontal plane in which it entered. The reason for
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this was that in the original version of LARM, the eddy coefficients
were not treated as functions of the Richardson number and thus vertical
variations in density were not considered. Edinger and Buchak have
since modified LARM to allow for the Richardson number dependence pré-
viously presented. Thus, when an unstable stratification arises, i.e.,
Ri < 0 , the vertical eddy viscosity and diffusivity are increased to
their maximm values based upon the diffusive stability criterion. This
Procedure forces either a maximum diffusion upwards or downwards depend-
ing upon whether the density of the cell is less than or greater than
the surrounding density. The results provided by Edinger and Buchak¥®
{and presented in Figures 16-30) were obtained from simulations in a
22.87-m flume rather than the actual length of the GRH flume traversed
by the underflow, i.e., 23.93 m. Values of the various coefficients

and other input parameters are presented in Table 2, A longitudinal

Table 2
LARM Tnput for GRH Flume Application

Parameter Yalue
Spatial step Ax = 1.524 m
Layer thickness H= 00,0762 n
Time step At = 5.0 sec
Horizontal viscosity 1.5 x 10‘6 m?/sec
Horizontal diffusivity 1.4 x 1077 me/sec
Vertical viscosity at 1.5 x 10“6 m2/sec

neutral stability
Vertical diffusivity at 1.4 x 1077 me/sec
neutral stability
Chezy coefficient 70 mllg/sec
Inflow 0.00063 m3/sec
Outflow 0.00063 m3/sec
Inflow temperature 62.0°F

¥ Personal communication, November 1979, J. E. Edinger and E. M. Buchak,
J. E. Edinger Associates, Inc., Wayne, Penn.
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spatial. step of 1.524 m and a constant layer thickness of 0.0762 m was
utilized. The schematization is presented in Figure 12. Approximately

5 sec of CPU time on a CYBER 176 was required to simulate 30 min.

AR I S— i —_— e e | e e e e —f —— — —]
- —
A¥ = 1524 m
H = 0.0762 m
e
HI

iyt
Figure 12. LARM schematization of GRH fiume

232, Figure 13 indicates that the density underflow computed by
LARM moves too slowly. Approximately 18 min is required for the under-
flow to travel 23.93 m; whereas, LARM computations result in & travel tine
of about 21 min to traverse 22.87 m. Neither varying the horizontal eddy
diffusivity and viscosity nor the Chezy coefficient resulted in a signifi-
cant change in the computed travel time. A comparison of the veloclty
profiies presented at approximately 12 m from the upstream end (see
Figure 14) reveals that LARM tends to compute a thicker density underflow
than observed in the flume. It is believed this is primarily due to the
stair-stepping representation of the botitom, along with perhaps the
effect of indirectly modeling buoyancy effects as discussed above. Fige

uré 15, showing a comparison of computed outflow temperatures from LARM
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and those recorded, tends to substantiate the conclusion that the density
underflow is not being forced to "hug" the bottom enough. The stair-
stepped bottom appears to result in too much mixing of the coldwater
underflow with the warmer water lying below the next stair-step, which
results in higher computed outflow temperatures than those recorded. The
computed 2-D mass flux field for 60 min after initiation of the inflow

at b-min increments is presented in Figures 16-30.

233. It should be realized that the above problem in the modeling

of the density underflow is not unique to LARM, Any model that represents

the bottom boundary in such a stair-stepping fashion will encounter the
same problem of too much mixing and a resulting slower, thicker, and
warmer density underflow.

234, As a final note, the results presented here were computed
with windward differencing of the convective terms throughout the flow
field. Much smoother computations were realized than when centered
differences were used everywhere except near the outlet. A comparison of
the relative magnitude of various terms in the horizontal momentum equa-
tion revealed that the convective terms are approximately the same magni-
tude as the density gradient terms. In real reservolrs, convective terms
usually dominate only in the backwater. In addition to the windward
differencing being employed, the upstream boundary condition was modified
to force the temperature in the most upstream column to remain at the
upstream temperature of 62°F, which resulted in a slightly faster under-
flow current.

Appilication of Waldrop's TVA Model
235. Dr. Bill Waldrop and Walter Harper at the Tennessee Valley

Authority in Norris, Tenn., have made an appliéation of the 2-D reser-
voir model to the density underflow problem in the GRH flume on the
computing facilities available to TVA and have provided results to WES.*
Two different runs were made. The first allowed the heavier inflow to

seek its own level at the upstream boundary, but in the second run, the

* Personal communication, November 1979, B. Waldrop and W. Harper, Ten-
nessee Valley Authority, Norris, Tenn.
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coldwater inflow was forced to enter the bottom layer, as was the case

in the Edinger and Buchak application. Figure 31 demonstrates that the

8

Fal od

MEASURED

[}
&=\ WALDROP

O~ INFLOW FORCED INTO
BOTTOM LAYER

o] &- INFLOW SEEKS OWN
LEVEL

DISTANCE ALONG FLUME OF SURGE FRONT, M

! 1 1 H H !
4 8 12 18 20 24

TIME AFTER INITIATION OF RUN, MIN

Figure 31. Comparison of TVA computed and
recorded underflow speed

computed underfiow moves too slowly. Results from both runs indicate a
computed fravel time in excess of 24 min, although it should be nqted
that the travel time for the underflow to traverse the horizontal portion
of the flume agrees guite well with recorded results. Once again it
would seem these results tend to substantiate the previous statements
made concerning the stair-stepping effect of the bottom. This effect is
further indicated from the plot of computed versus recorded outflow tem-

peratures presented in Figure 32. Computed velocity fields and isotherms

12k
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Figure 32, Comparison of TVA computed and
recorded outflow temperature

from the first application are presented in Figures 33-37 at times of
6, 12, 18, 24, and 30 min after initiation of the inflow. Similar plots
from the second application are presented at 10, 20, and 30 min in Fig-
ures 38-40. The only results provided for a direct comparison of computed
and, recorded velocities at a particular location are presented in Fig-
ure 41. There a comparison of the computed velocities at 10.67 m from
the upstream end at 10 min after initistion is made with recorded veloc—
ities at 11.43 m from the upstream end at 11 min after initiation.

236. As previously noted, the Waldrop meodel is an explieit FDM
and thus the time step at which computations are made is restricted by
the speed of the surface gravity wave. For this application, the maximum
allowable time step is computed to be about 0.50 sec. Waldrop indicates
that a time step of 0.30 sec was actually used, which resulted in 46 sec
of CPU time on a CDC 7600 computer for 6000 time steps.

237. As a final note, Waldrop has indicated that he also has en-

countered flow reversals in front of forced outlets. However, rather
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Figure 41. Comparison of TVA computed and
recorded horizontal velocities

than using windward differencing near the ocutlet, he reduées
sure by subtracting the dynamic pressure l/EDUi where UO
outlet wvelocity, to force the flow in the proper direction.

easy to implement, since hig basic computatiocnal cell, as is

0.008

the pres-
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This is

illustrated

below, has the velocity components defined at the center of the cell

with pressures defined on the vertical faces.
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underflow in the GRH flume was made by Bob MacArthur of the Hydrologic
Engineering Center (HEC) in Davis, Calif.* As in the previous model
applications, the initial conditions consisted of zero flows (zero veloc-—
ity throughout)} and isothermal water temperatures throughout at 70.6°F.
After time zerc, a constant coldwater inflow of 0.00063 m3/sec at

62.0°F was imposed entering near the bottom of the flume as an upstream
boundary condition. MacArthur indicated that a zero bressure, free dis-
charge boundary condition was prescribed at the outlet so the inflow
rate would equal the outflow and the free water surface would remain
horizontal. Values of the eddy coefficients used are presented in

Table 3.

Table 3
Values of the Turbulent Exchange Coefficients
Used for the GRH Flume Applications

Turbulent Exchange Coefficients

(Eddy Viscosity) __Value
€ ex 10 lb—sec/ft2 (0.L8 me/sec)
- 0.00k 1b-sec/rt? (1.9 x lO_h m2/sec)
€y 10 lb—sec/ft2 {(0.L48 m?/sec)
€y 0.01 lb--sec/f‘t2 (4.8 x 10_1[L m2/sec)
Turbulent Diffusion Coefficients

{Eddy Diffusivity) Value
Dx 2.0 ft2ésec (0.19 mg/sei) ,
Dy 0.01 £t"/sec (9.3 x 107 " mn“/sec)

239. Using a time step of 3 min, a total time of 18 min was
simulated. Results furnished by MacArthur for the First three time steps
are presented in Figures 42, L3, and 4Lk. The finite element network
used to simulate these results is shown in Figure 45. Although compara-

tive plots are not presented, MacArthur stated that travel times for the

* Personal communication, November 1979, R. C. MacArthur, Hydrologic
Engineering Center, Davis, Calif.
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coldwater plume to reach the outlet were usually about 18 to 20 min from
the time of initial inflow. However, outlet temperatures were several
degrees (°F) greater than the temperatures measured in the physical model
tests. In addition, the thickness of the plume and temperatures within
the bottom flow plume were greater than observed. This indicates more
vertical mixing is occurring in the numerical simulation than was occur-—
ring in the GRH flume, which MacArthur attributes to the cholce of the
vertical mixing coeffiéients.

2h0, An inspection of the two-dimensional velocity field pre-
sented after times of 3, 6, and 9 min in Figures 42, U3, and hk, respec-
tively, reveals that the classical density underflow phencmencn has not
fully developed in the computed results. At the point where the flume
bottom begins sloping, the flow seems to be projected across in a hori-
zontal plane. One reason for this may be the large values assumed for
some of the eddy coefficients, e.g., the diagonal component in the x-
direction e, = 0.48 m2/sec .  MacArthur has indicated that the stability
of the model is extremely sensitive to the values used for these coeffi-
cients. Therefore, such large values were required to obtain stable
solutions.

o1, The computer time on a CDC 7600 to simulate the results pre-
sented here required L2 sec of execution time to compute 18 min of flow
time. This compares with the approximately 5 sec required by LAEM to
compute 30 min of flow time and L6 sec required by the Waldrop explicit
model to also simulate 30 min of flow time.

2o, After these initial runs, MacArthur made some comparative
runs, using the GRH flume geometry, for homogeneous flow conditions and
additional thermally stratified flow conditions. In each case, flows of
0.00063 m3/sec were introduced with a linear veloeity distribution in
the bottom element at the upstream end of the flume. Figure 45 presents
the finite element network used for the simniations. The homogeneous
case was run isothermally at a temperature of 50.5°F, while the nonhomo-
geneous case was started with an initlal temperature of 50:5°F throughout
and an inflowing water temperature of 41.0°F.

243, Velocity distributions produced by these comparative runs

13k



are presented in Figure 46 for three different time steps (after 3, 9,
and 18 min} at the two sampling stations indicated on Figure 45. The
effects of flow stratification are quite evident and appear to be gquali-
tatively reasonable.

Application of
Eraslan's Discrete Element Model

2hh.  After the initial writing of this report, Eraslan provided
results from applications of his model called FLOWER.* FLOWER is a
computer cede for simulating fast-transient three-dimensional coupled
hydrodynamic, thermal and salinity conditions in the intake and dis—
charge zones of power plants opersting on rivers, lakes, estuaries and
coastal regions. The general 3-D model contains an automatic 2-D later-
ally averaged version, which was used in the GRH flume simulstions.

245, 'Eraslan indicates that.the turbulent transport model of
FLOWER is completely closed; i.e., it utilizes the same turbulent (and
laminar} transport model for all time and spatial scales in applications
to vastly different problems, including the scales of physical models
as well as the scales of prototype conditions. Therefore, the user
never specifies any friction or turbulent diffusion coefficients.

246, Two separate simulations were made with the flume discretized
as shown in Figure L47. One was a coldwater inflow, while the other was
a hotwater input. The coldwater inflow simulation was the same as pre-—
viously discussed, with the exception that the outflow was. 0,00109
m3/sec and the inflow temperature was 54.14°F. Therefore, the water
surface drbpped slightly during the simulation. Figures L8-55 present
"snap shots" at 200-sec intervals of the velocity field with no exagger-
ation of the vertical component for 1600 sec after initiation of the
inflow. From an inspection of Figure 52, it can be seen that the com—
puted travel time required to traverse the flume is 16-17 min, which com-
pares reasonably well with a recorded time of approximately 15 min for

these input conditions. Eraslan indicates that if the inflow had been

¥ Personal communication, March 1980, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.
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Figure 52. Velocities ccmputed by FEraslan's Model at
T = 1000 sec, coldwater infiow
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Figure 53. Velocities computed by Eraslan's Model at
T = 1200 sec, coldwabter inflow
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Pigure 54. Velocities computed by Eraslan's Model at
T = 1400 sec, coldwater inflow
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Figure 55. Velocities computed by Eraslan's Model at
T = 1600 sec, coldwater inflow
specified over only the bottom half of the cross section rather than
the complete section, a faster and less thick underflow current would
have resulted.

247, As noted above, an additional simulation was made in which
warm water at 70.6°F was input uniformly over the upstream end with the
water in the flume initielly being stationary and homogeneous at a
temperature of 54.14°F. Figures 56-65 present "snap shots" at 200-sec
intervals of the resulting 2-D flow field for 2000 sec after initiation
of the inflow.

248. Since FLOWER is an explicit model, the time step is re-
stricted by the gravity wave stability criterion based upon the deepest
part of the flume. The results presented were obtained by Eraslan from

running FLOWER on a PDP-10 computer.
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Figure 56. - Velocities computed by Eraslan's Model
at T = 200 sec, warmwater inflow
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Figure 57. Velocities computed by Eraslan's Model
at T = k00 sec, warmwater inflow
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Figure 58. Velocities computed by Eraslan's model at T = 600 sec,

warmwater inflow
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Figure 59. Velocities computed by Eraslan's model at T
warmwater inflow
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Figure 60. Velocities computed by Eraslan's Model
at T = 1000 sec, warmwater inflow
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Figure 61. Velocities computed by Eraslen's Model
at T = 1200 sec, warmwater inflow
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Figure 62. Velocities computed by Eraslan's Model
at T = 1400 sec, warmwater inflow
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Pigure 63, Velocities computed by Fraslan's Model
at T = 1600 sec, warmwater inflow
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Figure 6. Velocities computed by Eraslan's Model
at T = 1800 sec, warmwater inflow
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Figure 65. Velocities computed by Eraslan's Model
at T = 2000 sec, warmwater inflow
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PART VII: CONCLUSIONS AND RECOMMENDATIONS

2h9, Many different types of numerical hydrodynamic models exist.
These range from steady to unsteady models with the Physical problem ares
represented by one, two, or three spatial dimensions. In addition, some
medels consider the effect of temperature and/or salinity on the density
of the water; whereas, others treat the water body as being homogeneous.
Most numerical hydrodynamic models invcke the Boussinesq approximation
as well as the hydrostatic bressure assumption; however, there are
models that do neither and are thus able to convectively model buoyancy
effects. Some models allow for the movement of a free surface and its
subsequent effect on the internal flow; whereas, others impose a mathe-
matical rigid-1id approximation to enable larger time steps to be
employed in the numerical solution technique. A wvast majority of the
hydrodynamic models employ the finite difference method to develop nu-
merical solutions, although there are existing models that employ the
finite element method for the spatial integration of the governing
fluid dynamic equations. The vast majority of numerical hydrodynamic
medels handle the exchange of energy from the large-scale cireculation
patterns to the small-scale unresolvable eddies through the use of eddy
viscosity and diffusivity coefficients. However, there are substantial
differences in the expressions used to relate these eddy coefficients
to properties of the mean flow field.

250. One-dimensional models are often applied to reservoirs where
the principal variation of flow characteristics is in the vertical
direction. The primary advantage of such models is theilr ability to
resolve long-term or seasonal temperature profiles economically., Such
models, however, are not applicaeble for predicting multidimensional flow
Tields within stratified reservoirs for quality predictions. Therefore,

only two- and three-dimensional models have been investigated in this

study.

Conclusions on Two-Dimensional Modeling

251. 1In order for a numeriecal hydrodynamic model to be gpplicable
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to the prediction of flow fields in stratified reservoirs, it must first
of all be at least a two-dimensional (vertical-longitudinal) model and
preferably one that is laterally averaged to account for width changes
along the axis of the reservoir as well as with depth. The model must
be dynamic, i.e., time-dependent, and must be a heat-conducting model
that can handle unstable stratifications. In other words, surface heat
exchange and a subsequent modeling of the temperature field and its
coupling with the flow field through its influence on the water density
must be handled. In addition, since the model will be applied over
natural stratification cycles, during which significant flooding can
occur, a free surface must be allowed as opposed tc the rigid-1id approx-
imation. These are necessary criteria. Considerations of accuracy and
economy must naturally be taken into account also when selecting a model
for widespread use throughout the Corps.

252. Of the various two-dimensional models investigated, six
models come close o meeting the required criteria outlined above. These
are the models of Edinger and Buchak; Waldrop; Thompson; Norton, King,
and Orlob; Roberts and Street; and Slotta et al.'s NUMAC. The criteria
satisfied by these models are summarized in Table L. TIn addition,
although an in-depth investigation has not been made due to a 1acklof
published material as well as publication deadlines to be met, results
from Eraslan's 2-D simulations imply that it also meets these criteria.

253, Thompson's laterally averaged model is being developed
primarily for near field selective withdrawal studies. The governing
equations are solved implieitly using an iterative technique. Thus,
although the model will be a completely general, fully convective model
that will accurately handle general boundaries through the use of
boundary-fitted coordinates, the computing costs for long-term simula~—
tions will probably prohibit its use over natural stratification cycles
in reservoirs.

254k, The Roberts and Street model assumes a hydrostatic pressure
but does handle unstable densities by allowing for a large diffusion of
heat within the unstable water column. Of the six 2-D models that

satisfy the necessary criteria, this model and NUMAC are the only
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pure 2-D models. The other four solve the laterally averaged eguations,
The major disadvantage of the Roberts and Street model lies in its use
of a numerical solution technique that restricts the time step to be
smaller than the time required for the surface gravity wave to traverse
8 computational cell. Such a restriction can result in excessive com-
puter costs for applications extending over several months.

255. The Norton, King, and Orlob mcdel is similar to the Thompson
model in that the complete vertical momentum equation is solwved.
However, the Norton, King, and Orlob model uses the finite element
method to perform the spatial integration of the governing equations.
With the use of the finite element method, boundary geometry can be
aceurately handled but computing costs may become excessive for long-
term simulations. Another disadvantage is that although a free surface
is allowed, modifications would probably be required to allow for large
fluctuations that might occur over a stratification cycle. With the
complicated coding of finite element models, it appears that significant
modifications can often become major tasks.

256, The NUMAC model is based upon the MAC work of Welch et al.
and as such, like the Thompson and Norton, King, and Orleb models, is
a completely convective model. Once again, however, the computing costs
for long-term simulations would be excessive. Not only is a two-
dimensional Poisson equation solved, but the basic computations utilize
an explicit solution technique with the maximum time step restricted
by the speed of the surface gravity wave.

257. The 2-D Waldrop model appears to be a well developed
laterally averaged hydrostatic model that can be directly applied in
its present form to predict stratified reservoir hydrodynamics. The
manner in which the bottom boundary condition on the velocity is
prescribed would seem to allow for a more accurate modeling of flow
near the hottom. However, the bottom is still in essence represented
in a stair-step fashion, which results in excessive mixing of density
underflows. This can be seen from the results of the application to
the GRH flume. The major disadvantage of the Waldrop model (and

Eraslan's discrete element model) is the gravity wave restriction on

150



the time step as a result of the explicit finite difference scheme em~
ployed. As Waldrop has noted, if the boundary conditions are varying
rapidly enough to reguire input at time intervals on the order of the
maximum time step allowable by the Courant condition, explicit models
can often be shown to be more economical than implicit ones due %o their
less complicated coding. However, if an extremely general model is
desired for use in long~term reservoir simulations during which
boundary input may or may not be rapidly varying, it appears difficult
to justify the selection of a model with the time gtep restricted by
the Courant condition.

258, The Edinger and Buchak model (LARM) is a laterally averaged,
hydrostatic model that employs a unique method for removing the Courant
condition as a stability criterion. This is accomplished through a
coupling of the water surface computations and the internal flow such
that the water surface is computed implicitly, while the internal com-
putations are performed explicitly. Unstable stratifications are in-
directly handled by forcing the maximum diffusion allowed by the
stabllity criterion into adjscent cells. Results from applications of
both the Edinger and Buchak and the Waldrop 2-D models to the GRE flume
are encouraging. In addition, the results from the 2-D version of
Eraslan's 3-D code agreed quite well with the flow phenomena cbserved
in the flume for his input conditions.

259. There are several areas of the Edinger and Buchak model
that should be investigated for possible further development. With its
modular programming, significant modification of the model should not
be unduly difficult. These areas are discussed later, Because the
Edinger and Buchak model satisfies the necessary criteria--namely,
time-dependent, free surface, 2-D laterally averaged, variable density
and heat-conducting--and allows for unstable stratification and the
solution technique allows for economical long-term simulations, it is
the most logical 2-D model to select for further development to provide
the Corps with an accurate and economical predictive capability in the

area of reservoir hydrodynamics.
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Conclusions on Three-Dimensional Modeling

260. The state of the art is such that it does not appear any of
the three-dimensional models investigated can be economically applied
for long-term reservoir simulations. However, since most reservoirs
actually exhibit a three-dimensional nature, undoubtedly the need within
the Corps for a three-dimensional predictive capability will increase
over the next few years. To satisfy this need in a practical sense,
new solution techniques as well as increased computing powef must be
realized. In addition, one should consider making the hydrostatic pres-
sure assumption to remove the computing cost of solving for a nonhydro-
static pressure.

261. Neither of the 3-D models applied to the GRH flume yielded
very encouraging results. Spraggs was not able to simulate more than
600 sec with THERMAC due to the extremely long compubting times required.
The nonhydrostatic version of the Waldrop-Tatom model was run with the
free surface frozen, which allowed a large time step to be used. How-
ever, the density underflow was not properly computed. After 33 min,
the model computed a travel of only approximately 10.06 m; whereas, only
18 min was required in actuality for the underflow to traverse the
complete length of the flume (23.93 m}. Tatom feels that the problem
is related in some manner to the dynamic pressure computations. There-
fore, if time and funds had permitted, it would have been interesting

to apply the hydrostatic version to the same density underflow problem.

Recommendations for Two-Dimensional Modeling

262. As noted above, it is believed that the Edinger and Buchak
2.D laterally averaged model offers the most promise in the area of
multidimensional stratified reservoir hydrodynamic modeling in the near
future. However, additionsl developmental work and modifications are
needed to make the model more flexible and accurate; therefcore, it is
recommended that the following items be investigated during the next year

for possible further development and incorporation into LARM:
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The application to the density underflow in the GRH
flume demonstrates the mixing effect of a stair-
stepped bottom. It is believed that a transformation
of the vertical coordinate, as is performed in Lick's
model, offers one solution to this problem. Particular
attention should be directed toward the neglection of
the cross-derivative terms resulting from the non-
orthogonal transformation.

LARM presently allows for the vertical eddy coefficients
to be functions of the Richardson number; however, the
horizontal coefficients are assumed to be constant. It
is recommended that an eddy coefficient model similar
to that of Spraggs or perhaps the simpler model employed
by Waldrop and Harper (or perhaps Eraslan's closed
turbulence model) be incorporated into LARM. This
should be relatively easy to accomplish, since the com-
puter code was initially programmed with such an
addition in mind.

LARM presently employs either windward or centered dif-
ferences to represent the advective terms in both the
momentum and the temperature transport equations along
with a forward time difference. Such a first order
transport scheme is adeguate for continuous distribu—
tions. However, if instead of an essentially continucus
distribution, & slug of some quality constituent is %o
be traced through the reservoir, large errors can result
from the use of such first order schemes. Therefore,

it is recommended that higher order transport schemes
such as those employed by DHI or perhaps the 2-point
scheme of Holly and Preissman be investigated for use

in the modeling of quality constituents, rather than
the scheme LARM presently uses for temperature.

Tt would seem that Waldrop's method of setting the
bottom boundary condition on velocity by matching a
logarithmic profile is quite realistic. It is recom-
mended that the use of such a boundary condition in
LARM be investigated. The layer-averaged approach
taken in LARM may make this difficult.

The horizontal grid spacing in LARM is constant. A
variable grid spacing would be useful to provide greater
flexibility in the resolution of a quality constituent
in a particular area. The difficulty in allowing this
and the subsequent errors that might occur should be
determined. Obviously, the linear averaging now
employed to provide values of variables at points where
they are not defined would have to be changed to reflect
a weighted average. Also, as discussed by Brown and
Pandolfo (1979), a nonuniform spatial grid can influence
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the numerical stability of the transport equation.
Recall alsc the deterioration of the truncation error
associated with variable grids.

LARM models a single reach, i.e., the reach following the
major axis of the reservoir. A desirable flexibility

is the ability to simultaneously model the main body

of the reservoir as well as its major arms or tribu-
taries, i.e., to allow for a tree structure or branched
network. The possibility of making LARM a multijunction
model should be considered.

The applicability of LARM at the downstream end of a
reservoir near the dam is questionable due to the hydro-
static pressure assumption as well as the inaccurate
modeling of the momentum flux through the outlet. The
hydrostatic pressure assumption is probably acceptable,
except in the immediate vicinity of the ocutlet; whereas,
the inaccurate modeling of the momentum flux as a
result of the model being less than three-dimensional
might extend for several dam widths. The use of a
momentum correction factor to better model the momentum
flux near the dam should be investigated. In addition,
the coupling with LARM of a model that is more appli-
cable near the vicinity of an outlet, e.g., Bohan and
Grace (1969}, to provide the downstream boundary con-
dition for LARM might be considered.

LARM has been developed such that the user has to
"hard wire," i.e., physically change code statements,
the model for each application, although the version
being run by WES personnel has been modified to pro-
vide a slightly more general model. It is not believed
that the current approach of forcing a user to change
code statements for each application is acceptable in
a model to be made available to all Corps Division and
District offices. Therefore, LARM should be made
sufficiently general so that it can be applied to a
wide range of problems strictly through a change of
input data only.

In the modeling of real reservoirs, one often encounters
side embayments that contribute essentially nothing to
the momentum of the fiow field, but must still be
accounted for as storage areas in the conservation of’
mass. More accurate computations would be realized if
LARM allowed for the specification of two widths. One
for the total width that is currently input, which
would continue to be used in the continuity equation.
The other would be a width corresponding to the actual
flow area for use in the momentum equation.
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4. In the use of numerical hydrodynamic models, the ini-
tial state of the system as well as time-varying
boundary conditions must be prescribed as input. The
nature of the hyperbolic equations being solved is such
that after a sufficient length of time, the effect of
the initial conditions becomes negligible. The time
simulated to remove initisl condition effects is com-
monly referred to as the "start-up time." One way to
handle this problem is to compute a steady state before
imposing the time variation of the boundary conditions.
LARM presently can only compute a steady state as the
asymptotic convergence of a time-varying solution com~
puted by holding the boundary conditions constant. The
possibility of incorporating into LARM the capability of
solving the steady-state equations, as allowed by the
Norton, King, and Orlob FEM, should be investigated.
After the above modifications are made, in particular
Lick's transformation to allow for better representation
of the bottom, LARM should again be applied to the
density underflow problem in the GRH flume. In addition, .
hopefully a good set of field data will be available by
then through EWQOS. Assuming an eddy coefficient model
similar to that of Spraggs and Street (1975) has been
incorporated, these two applications should provide in-
formation on whether a single scaling parameter can be
used for a wide range of problems.

Recommendations for Three-Dimensional Mcdeling

263. Unlike the two-dimensional models, there are no three-
dimensional models that can economically be agpplied for long-term reser—
voir simulations. This is because all of the models are explicit, and
thus excessive computing time is required. Imposing the rigid-lid
approximation removes the Courant condition on the time step, but results
in a Poisson equation for the pressure that must be solved, which can
be costly in itself. Making the hydrostatic Pressure assumption helps
in that only a 2-D Poisson equation rather than a full 3-D Poisscn
equation must be solved., However, it is not believed that the rigid-iid
approximation is appropriate for models to be used over flooding cycles;
therefore, new solution technigues that allow for = free surface but
remove the speed of a gravity wave from the stability criteria must be

devised.
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264. The Spraggs and Street (1975) model currently solves for
the free surface implicitly, but does not implicitly couple the internal
flow to these computations. It is recommended that a coupling similar
to that in Fdinger and Buchak's (1979) work, but now in two dimensions,
be investigated during the next year. If this can be accomplished in
an efficient manner, long-term three-dimensional free surface hydrody-

namic modeling will have taken a giant step forward.
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APPENDIX A: NUMERICAL RESULTS FROM APPLICATION OF
3=D PLUME TC GRH FLUME

1. The nonhydrostatic version of the Waldrop-Tatom (1976)* model
was used to generate a numerical solution to the density underflow problem
in the GRH flume, Values of various input parameters are presented in
Table Al., 1In an effort to increase the computational time step, and
thereby reduce the number of steps required, the free surface was ini-
tially assigned zero slope and was "frozen" for all subsequent compu-
tations.

2. With a time step of 0.5 sec, the numerical solution was marched
forward for LO0O time steps corresponding to 2000 sec of real time in
the flume. Outputs of veloecity, in terms of the u, v , and w com-
ponents, and temperature, as taken from Tatom and Smith (1979a), are
presented at 0, 1000, and 2000 sec in Tables A2 through Al3.

* References used in the appendixes of this report are listed in the Ref-
erences section at the end of the main text.



Table Al
3=D Flume Input

Parameter

Inlet volumetric flow rate
Exit volumetric flow rate
Inlet area

Outlet area

Inlet velocity

Qutlet velocity

Initial ambient veloclty
Inlet temperature

Initial ambient temperature
Inlet density

Initial ambient density
Inlet equivalent diameter
Inlet kinematic viscosity
Inlet Reynolds number
Chezy coefficient

Fanning frietion factor
Water depth at inlet

Water depth at outlet

Value

0.02228 £t3/sec
0.02228 £13/sec

0.5 ££°

0.25 £t°

0.04l56 ft/sec
0.08912 ft/sec

0 ft/sec
61.97°F
T0.T9°F

62.358 1bm/ft°
62.298 1bm/ft°

0.67 ft
1.19 - 10
2496

1
13.75 ft
0.00h97
1 ft
3 ft

/

> ft2/sec

2
/sec

A2
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APPENDIX B: RESULTS OF VECTORIZATION OF 3-D PLUME

1. A series of benchmark runs were carried out to compare the
performance of the scalar and vector versions of 3-D PLUME (Tatom and
Smith 1979b). Such runs were all carried out with the K-Compiler on
the WES ASC Computer and consisted of two types: (a) numerical con-

sistency and (b) computational speed.

Nunmerical Consistency Results

2. Benchmark runs concerned with numerical consistency between
the scalar and vector programs were relatively short and included print-
outs of variables not inecluded in the normal output of either program.
Such printouts initially revealed s series of minor diécrepancies in the
vector version of the program and also one previously undetected dis-
crepancy in the scalar version. After such discrepancies were corrected,

numerical consistency within one percent was achieved.

Computational Speed Results

3. Two types of timing runs were carried out with both the vector
and scalar versions of the program. The first type consisted of onl&
the initialization computations plus one time step computation and was
designed to provide a measure of initialization time. The second type
of run extended for 2000 time steps and was designed to provide a mea-
sure of the computation time associated with each time step. The re-=
sults of these timing runs (including compilation time) are summarized
in Table Bl. '

h. As indicated in Table Bl, the compilation time for the vector
version of the program was approximately three times the scalar compila-
tion time, as would be expected because of the additional optimization
procedures involved in vector compilation. The initialization times
were essentially equal. The time required for 2000 time steps with the

vector version was approximately LY percent of the corresponding time

Bl
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with the scalar version. It is important to note that in carrying out
the timing comparison the amount of central memory (versus extended
memory), as shown in Table Bl, was not the same for all runs. For the
2000-time step vector run, no central memory was used; while for the
corresponding scalar run central memory comprised 11 percent of the
total memory. Because fetch times associated with central memory are
smaller than the fetch times with extended memory by a factor of approx-
imately 6, the actual improvement in performance of the vector version
over the scalar version is somewhat greater than the 56-percent reduc-
ticn in computation time noted. With an equal portion of central mem-
ory, the vector version should be approximately three times as. fast as
the scalar version. For a production run consisting of 4000 time steps,

the computation time would thus be reduced from 2400 sec to 800 sec.
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Table Bl

Comparison of Computation Time¥

Scalar

Vector

Central Extended

Central Extended

Memory Memory Time Memory Memoxry Time
ITtem words words sec words words sec
Compilation 0 184,320 576.63 0 184,320 1,799.89
Initialization 4,006 106,k96 3.7+  L,096 131,072 3.26
and 1 step
Computation for 12,288 98,304 1,200.59 0 143,360 530.1k

2000 steps

¥ Tatom and Smith 1979b.
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APPENDIX C: NOTATION

a,b,c Constants in expression for surface heat flux
A Ares of discrete element

AH Horizontal eddy diffusivity

Ai Cross-sectional ares
Aij Eddy diffusivity tensor from time averaging
Aij Eddy diffusivity tensor from spatial averaging
Av Vertical eddy diffusivity

B Width

Bi Surface width

BO Width of opening at the dam

Chezy coefficient; constant in expression for surface wind
stress; phase velocity

c* Constant in expression for surface wind stress
Cij Sum of eddy diffusivities due to time- and spatial-averaging
CSHE Coefficient of surface heat exchange
Cv Discrete element volume
dvo Volume of a discrete element
Dij Diffusivity tensor

ET Equilibrium temperature
g Kondimensional friction factor
f' Force vector

F,f Arbitrary variables

FS Smoothed solution in leapfrog scheme
8:84 Acceleration due to gravity
G Volumetric flow rate

Ci



Water depth

Height of density underflow

Rate of surface heat exchange

Height of opening at the dam; water depth
Surface elevation

Unit vectors

Boundary point

Coefficient in expression for bottom friction; diameter of
gverage bottom roughness

Constant = 0.10

Length scales

Reference depth; length scale

Unit normal vector to the surface

Components of cutward unit normal vector to the surface
Pressure; function to control coordinate spacing
Time-averaged pressure

Time-averaged and spatially averaged press
Atmospheric pressure

Hydrostatic pressure

Reduced pressure

Surface pressure

Surface heat flux

Function to control coordinate spacing; discharge through
the dam

Reynolds number
Richardson number

Critical Richardson number

c2
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WIND

Salinity; slope of reservoir bottom

Rate of strain tensor

Time

Stress force vector

Temperature

Deviation between instantaneous and time-averaged temperature
Time-averaged temperature

Difference between time-averaged temperature and time- and
space—-averaged temperature

Time-averaged and spatially averaged temperature
Surface temperature

Velocity components

Tensor notation for velocity

Time-averaged velocity

Deviation between instantaneous velocity and time-averaged
velocity

Time- and space-averaged velocity

Deviation between time-averaged veloclty and time- and
space-averaged velocity

Average velocity of density underflow
Outlet velocity

Velocity of the wind

Velocity‘vector

Wind speed

Cartesian coordinates

Tensor notation of spatial coordinates

Elevation of reservoir bottom
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o

Arbitrary variable; constant in an expression for vertical
eddy coefficient dissipative coefficient

Turbulent Prandtl number

Momentum correction factor; constant in an expression for
vertical eddy ccefficient

Sum of P Ei,ﬁ , and u
Change in water density

Time and spatial steps

Time step restricted by Courant condition
Kronecker delta

Horizontal eddy viscosity

Bddy viscosity tensor as a result of time averaging
Eddy viscosity tensor as a result of space averaging
Cyclic tensor

Vertical eddy viscosity

Water surface elevation; vorticity

Molecular eddy viscosity

Nonorthogonal curvilinear coordinates

Water density

Time-averaged water density

Time-averaged and spatially averaged water density
Air density

Reference water density

Transformed vertical coordinate

Bottom shear stress

Laminar siress tensor

Normal internal stress at the surface

Ch
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Tangential internal stress at the surface
Wind shear stress
Arbitrary variable; angle of wind with reservoir axis

Scaling parameter in an expression for the eddy viscosity
tensor

Coriolis parameter
Vorticity

8/0x 1 + 8/9yj + 3/9zk
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